REPORT
QUARTERLY GROUNDWATER SAMPLING
THIRD QUARTER 2007
MARYLAND SQUARE SHOPPING CENTER
3661 SOUTH MARYLAND PARKWAY
LAS VEGAS, NEVADA
For AL PHILLIPS THE CLEANER

URS Corporation
Job No. 26698724.00005
December 6, 2007

December 6, 2007

National Drycleaners, Inc. c/o Randall Jackson Williams & Company Consulting, Inc. 9237 Ward Parkway, Suite 114 Kansas City, MO 64114 Al Phillips the Cleaner 3250 Ali Baba Lane, Suites C-F Las Vegas, NV 89118 Attn: Mr. Stephen Mailloux

Re: Third Quarter 2007 Groundwater Sampling
Maryland Square Shopping Center
3661 South Maryland Parkway, Las Vegas, Nevada
Facility ID: H-000086

Gentlemen:

URS Corporation is pleased to submit the Third Quarter 2007 quarterly groundwater sampling event report for the Maryland Square Shopping Center. Groundwater from 10 monitoring wells was sampled during this quarterly sampling event. The groundwater samples were submitted to a laboratory to test for volatile organic compounds. Analysis of total organic carbon, dissolved iron, and manganese, chloride, nitrate, sulfate, and alkalinity was also performed for selected groundwater samples.

The Nevada Division of Environmental Protection requires the following statements to be provided by the responsible Environmental Manager for this project (per NRS 459.500):

"I hereby certify that all laboratory analytical data was generated by a laboratory certified by the NDEP for each constituent and media presented herein."

"I, Scott Ball, hereby certify that I am responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state, and local statutes, regulations and ordinances."

Sincerely,

URS Corporation

Scott Ball, CEM #1316 Expires Oct 15, 2009 Project Manager

cc: Mary Siders, NDEP

URS Corporation 811 Grier Drive Las Vegas, NV 89119 Tel: 702.492.7900 Fax: 702.492.9149

REPORT GROUNDWATER SAMPLING THIRD QUARTER 2007 MARYLAND SQUARE SHOPPING CENTER 3661 SOUTH MARYLAND PARKWAY LAS VEGAS, NEVADA

Prepared for:

Al Phillips the Cleaner 3250 W. Ali Baba Lane, Suites C-F Las Vegas, Nevada 89118

and

National Drycleaners, Inc. c/o Randall Jackson Williams & Company Consulting, Inc. 9237 Ward Parkway, Suite 114 Kansas City, MO 64114

Prepared by:

URS Corporation 811 Grier Drive Las Vegas, Nevada 89119

Job No. 26698724.00005 December 6, 2007

TABLE OF CONTENTS

			Page No.
1.0	INTRODU	JCTION AND BACKGROUND	1
2.0	GROUND	WATER SAMPLING PROCEDURES	4
3.0	FIELD DA	ATA AND TEST RESULTS	6
	3.1	Water Levels and Gradient	6
	3.2	Groundwater Analyses and Chemistry	6
4.0	CONCLU	SIONS 8	
	4.1	Groundwater Sampling Conclusions	8
	4.2	Remedial Efforts AND ASSESSMENTS	
5.0	REFEREN	NCES 9	
		LIST OF TABLES	
	Table 1 Table 2 Table 3 Table 4	Summary of Well Characteristics and Groundwater Elevations Summary of Field Water Quality Measurements in Monitoring Wells Selected VOC Concentrations in Monitoring Wells Summary of Other Analytical Data	
		LIST OF FIGURES	
	Figure 1 Figure 2 Figure 3 Figure 4A Figure 4B Figure 5	Site Location Map Hydrographs for Shallow Monitoring Wells Groundwater Elevation Contours for Shallow Wells PCE Concentration vs. Time in Selected Shallow Wells PCE Concentration vs. Time for Intermediate Well MW-9 Shallow Monitoring Well PCE Concentrations and Contours	
		APPENDIX	
	Appendix Appendix	1	

1.0 INTRODUCTION AND BACKGROUND

This report presents the results of the Third Quarter 2007 groundwater sampling event at the former Al Phillips the Cleaner (Al Phillips), Maryland Square Shopping Center located at 3661 South Maryland Parkway in Las Vegas, Nevada (Figure 1). This report includes the results of groundwater sampling of 10 of the 27 monitoring wells located on and around the Al Phillips site during September 2007. URS Corporation (URS), on behalf of Al Phillips, conducted the work. As required by state law, this project is being performed under the supervision of a certified environmental manager.

Al Phillips took over control of assessment activities at the site from the Herman Kishner Trust in the spring of 2004, after which all site characterization and monitoring work has been conducted by URS. Prior to URS site investigations, Converse Consultants (Converse) performed several subsurface assessments and groundwater sampling at the former Al Phillips facility from August 2000 through March 2004. Converse's findings indicated that tetrachloroethylene (PCE) was detected in soil beneath the former facility and in groundwater adjacent to, and downgradient from, the facility. URS reviewed Converse reports (see References) and other documents obtained from Converse and the Nevada Division of Environmental Protection (NDEP).

URS then evaluated the data to assess whether or not the PCE source area for the groundwater plume, the lateral and vertical extent of the groundwater plume, the geology of the site, and the nature of PCE concentrations in the groundwater plume, were characterized. Based upon Converse's reports, concentrations of PCE above regulatory levels are present in soil beneath the former facility and in groundwater. Al Phillips and URS met with NDEP on April 29, 2004, to discuss the transfer of site responsibility to Al Phillips from the Herman Kishner Trust. Following this meeting, a work plan for additional characterization was prepared with a final revised plan issued September 10, 2004, as noted above.

In addition to the data provided by Converse, URS obtained findings from SECOR International Incorporated (SECOR, 2004) regarding the presence of a hydrocarbon plume in downgradient monitoring well MW-11. This monitoring well is located on the Boulevard Mall property, east of the former Al Phillips site. This well was sampled on February 12, 2004, by representatives from both SECOR and Converse. Analysis of the samples determined that a phase-separated liquid, identified as a weathered gasoline, was present in the groundwater from the well. SECOR performed remedial action at this well from April 2005 to March 2007 to remove hydrocarbon-contaminated water.

In April 2005, URS drilled seven boreholes in and around the site of the former Al Phillips the Cleaner facility. URS drilled three boreholes (B-6, B-7, and B-8) around the area where the dry cleaning equipment was formerly located. The other five boreholes (B-9 through B-12) were drilled

in areas surrounding the location. Soil samples were taken at 5-foot intervals from each borehole, except for B-11 and B-12. Based on analytical results from the soil samples collected during the April 2005 drilling and sampling event, only three soil samples (B-8-5', B-10-10', and B-10-15') exceeded the preliminary remediation goal (PRG) for PCE of 3,400 micrograms per kilogram (μ g/kg) for soil located on an industrial parcel. The highest concentration detected was 120,000 μ g/kg in borehole B-10 at 10 feet below grade.

In addition to the boreholes, six new groundwater monitoring wells were installed by URS in March 2005. These wells are MW-17, MW-18, MW-22, MW-23, MW-24, and MW-25. Well MW-17 is located in the parking area east of the building formerly occupied by Al Phillips. Monitoring wells MW-18, MW-22, MW-23, MW-24, and MW-25 were installed in the residential area downgradient (east) of the Boulevard Mall and Al Phillips. Two additional groundwater monitoring wells were installed by URS in March 2006. These wells are MW-26 and MW-27. Well MW-26 is located downgradient (east) of well MW-25 on Seneca Lane. Well MW-27 is located downgradient (east) of well MW-26 on Ottawa Circle.

URS prepared a Source Removal Corrective Action Plan to further assess PCE contamination in the soil at the former Al Phillips Facility site in November 2006. Seventeen additional soil-sampling boreholes were drilled in February 2007, near the location of the 12 boreholes drilled in April 2005, as part of a Source Area Soil Assessment. Based on these investigations, URS proposed a remedial method, schedule and site-specific level of cleanup to the NDEP. URS also conducted an offsite soil vapor study in areas downgradient of the former site, including the Boulevard Mall parking lot and locations in the residential area east of the mall. Based on this new set of data, the NDEP is currently reevaluating the remedial approach to the downgradient groundwater contamination and has not authorized implementation of the Source Removal Corrective Action Plan.

In 2007, URS requested a reduction in the frequency of groundwater sampling for the site from quarterly to semi-annual monitoring (letter dated March 1, 2007). The NDEP approved the change with the following conditions:

- Water levels will be measured quarterly for all 27 monitoring wells.
- Ten of the 27 wells (MW-13, MW-14, MW-17 through MW-19, MW-20, MW-23 and MW-25 through MW-27) will be sampled each quarter.
- The remaining 17 of the 27 wells (MW-1 through MW-12, MW-15, MW-16, MW-21, MW-22 and MW-24) will be sampled semi-annually.

In August 2007, URS sent a request to NDEP to modify groundwater sampling procedures. The NDEP concurred with the request (letter dated September 10, 2007) to change from a three volume purge-and-sample method to low-flow sampling method using procedures established by the United States Environmental Protection Agency (USEPA) and American Standard for Testing Materials (ASTM). NDEP stipulated that the standards presented in ASTM D 6771-02 must be followed.

2.0 GROUNDWATER SAMPLING PROCEDURES

Based upon the well sampling schedule required by NDEP, groundwater samples from 10 (MW-13, MW-14, MW-17 through MW-20, MW-23, and MW-25 through MW-27) of the 27 monitoring wells were collected during this sampling event from September 17 through 21, 2007. As required by NDEP, depth to groundwater was measured at all 27 wells. Monitoring well MW-4, near the southwest corner of the western parking structure at the Mall, is located adjacent to several large trees and their roots have likely clogged the well screen, as evidenced by root stringers in the water when bailed, resulting in a measured 0.16 foot high water column. Monitoring well MW-11 has been used for remedial action to remove hydrocarbon-contaminated water. A noticeable hydrocarbon odor was detected this quarter while taking a water level reading in this well. URS contacted SECOR and confirmed there was gasoline sheen on water in well MW-11 when it was last accessed by SECOR. A request was recently submitted to NDEP to remove this well from future sampling events.

Before collecting samples at a well, each well was measured for depth to groundwater and then purged using a submersible pump. An electronic water level meter, accurate to the nearest \pm 0.01 feet, was used to measure depth to water in each well before and periodically during well purging. Total well depths were also measured after samples were collected by lowering the weighted probe to the bottom of the well and recording the depth to the nearest 0.01 foot.

The 10 monitoring wells (referenced above) were purged prior to sampling using a low-flow or minimal draw down method. A portable pump with a low-flow power booster controller, low-flow control valve and non return check valve was carefully placed within the screened depth of the water column to minimize agitation of the water column. The pump was placed at or near the midpoint of the screen in a position at least 2 feet from the top and 2 feet from the bottom of the screen, where possible.

According to the ASTM, low-flow pumping refers to the velocity of water entering the pump intake and the formation pore water adjacent to the screen during pumping. The purpose is to minimize stress on the groundwater unit during pumping. Pumping flow rates between 0.1 to 0.5 liters per minute (L/min) are maintained in order to control the well screen entrance velocity and minimize turbulent flow to the well. Frequent water level draw down measurements were recorded during well purging to establish an optimum rate for pumping. Water quality parameters of temperature, pH, specific conductance (SC), DO, turbidity, total dissolved solids (TDS), and ORP were monitored during well purging to evaluate when stable values were attained. The criteria for defining stabilization of water quality parameters is presented in Table 1 of ASTM D 6771-02: pH - \pm 0.2 pH units, Conductivity - \pm 3% of reading, DO - \pm 10% of reading or \pm 0.2 mg/L whichever is greater, and ORP - \pm 20 mV.

The depth to water, water quality measurements and purge volumes were entered in the purge log or Groundwater Sample Collection Log (Appendix A).

The pump, electronic water level meter and field meter probe were decontaminated before use at each well. Purge water and decontamination water was placed in DOT-approved 55-gallon drums. The drums were labeled and stored at the former Al Phillips facility, prior to disposal in accordance with regulations.

After purging a well, groundwater samples were transferred from the tubing directly into the appropriate sample containers and were numbered by well number on the sample container. The in line flow cell used for measuring parameters during purging, was bypassed during sampling.

Groundwater samples were collected in four different types of containers based on the selected analysis. Water samples to be analyzed for VOCs were collected in three 40-milliliter clear glass VOA vials pre-preserved with hydrochloric acid. Three VOA vials were collected in case one was to break during transport. The VOA vials were filled so that there was no headspace. Water samples to be analyzed for total organic carbon (TOC) were collected in 250-milliliter amber glass bottles pre-preserved with sulfuric acid. Groundwater samples to be analyzed for dissolved iron and manganese were collected in 250-milliliter clear plastic bottles pre-preserved with nitric acid. These samples were filtered by the laboratory prior to analysis. Groundwater samples to be analyzed for chloride, nitrate, sulfate, and alkalinity were collected in 500-milliliter clear plastic bottles that contained no preservative. Due to the 48-hour holding time for nitrate, groundwater samples collected in 250-milliliter amber glass bottles pre-preserved with sulfuric acid to be analyzed for TOC could be used in case the sample could not be analyzed within 48 hours.

Groundwater samples were labeled with the date and time the sample was collected, the sample and well number, and name of the firm and signature of the individual collecting the sample. The sample containers were sealed, labeled, and stored in a cooler with ice. Chain-of-custody forms (Appendix B) were filled out with all the appropriate sample information, and accompanied the samples to the analytical laboratory.

3.0 FIELD DATA AND TEST RESULTS

3.1 WATER LEVELS AND GRADIENT

The depth to groundwater in each of the 27 selected monitoring wells was measured between September 17 and 21, 2007. The values are listed in Table 1 along with historical data. The values ranged from approximately 12.45 feet below the top of casing in well MW-18 to 27.03 feet in well MW-16. Figure 2 shows hydrographs for shallow wells during the last 7 years. In general, groundwater elevations increased slightly in wells west of The Boulevard Mall. The general flow direction for the shallow aquifer is eastward, as indicated by the groundwater contours and flow directions shown on Figure 3.

3.2 GROUNDWATER ANALYSES AND CHEMISTRY

Ten groundwater samples, from the wells identified in Section 2.0, were analyzed for VOCs by USEPA Method 8260B. Samples from monitoring wells MW-13, MW-18, and MW-25 were also analyzed for total iron and manganese; chloride, nitrate, and sulfate; alkalinity; and TOC, by USEPA Methods 200.8, 300.0 and 310.1, and 415.1, respectively. The laboratory analytical reports and chain-of-custody forms are provided in Appendix B.

Table 2 summarizes field measurements of groundwater temperature, pH, SC, DO, TDS, ORP, and turbidity in the monitoring wells. Groundwater temperatures ranged from 24.23 to 32.45 degrees Centigrade (°C). Groundwater pH in shallow groundwater wells ranged from 6.72 to 6.84. Groundwater SC in shallow groundwater wells ranged from 3.26 to 3.56 microSiemens per centimeter (μS/cm). Field measurements of DO concentration in the groundwater are used to monitor the extent of natural attenuation occurring within the aquifer. DO concentrations below 0.5 milligrams per liter (mg/L) are considered characteristic of anaerobic conditions (Wiedemeier et al, 1998). DO concentrations during this sampling event in shallow groundwater wells ranged from 3.40 to 5.43 mg/L. TDS concentrations during this sampling event in shallow groundwater wells ranged from 2.1 to 2.3 grams per liter (g/L). ORP values for shallow wells ranged from 176 to 228 millivolts (mV). Field measurements of groundwater turbidity recorded during sampling of the wells ranged from 0 to 352 nephelometric turbidity units (ntu).

The Nevada Drinking Water Standards Maximum Contaminant Level (MCL) for PCE in groundwater is 5 micrograms per liter (μ g/L). Analytical results for groundwater collected during this sampling event from shallow wells MW-13, MW-14, MW-17 through MW-20, MW-23, and MW-25 through MW-27 exceeded the PCE MCL. Table 3 summarizes the analytical data for PCE detected in the wells. Figures 4A and 4B show the PCE concentrations vs. time in the shallow and intermediate wells, respectively. The highest concentration of PCE detected this quarter was 2,000 μ g/L in

shallow well MW-13. Well MW-13 is located down gradient from the site on the Boulevard Mall property near the northeast corner of the front parking garage and has historically had the highest PCE concentrations. The PCE concentration in well MW-27, which is the furthest downgradient well at the site, was $320\,\mu\text{g/L}$. Figure 5 shows the monitoring well locations, respective PCE concentrations for the shallow wells sampled this quarter, and the estimated PCE plume area for the shallow aquifer for this current sampling event.

Trichloroethene (TCE), cis-1, 2-dichloroethene, and vinyl chloride were not detected in groundwater this sampling event. TCE, cis-1,2-dichloroethene, and vinyl chloride are respectively first, second, and third order reductive dechlorination (anaerobic conditions) degradation compound of PCE. TCE has been detected in low concentrations in wells MW-2, MW-6, and MW-22 in prior sampling events.

Table 4 summarizes the results of laboratory testing for ionic compounds for the Third Quarter 2007 sampling event. Iron concentrations ranged from 1.6 to 2.0 mg/L and manganese concentrations ranged from non-detect to 0.01 mg/L. The anions (chloride, nitrate, and sulfate) ranged from 190 to 210 mg/L, 5.1 to 6.2 mg/L and 1,700 to 1,800 mg/L, respectively. Total alkalinity laboratory concentrations ranged from 210 to 240 mg/L. Total organic carbon (TOC) concentrations ranged from 1.2 to 1.3 mg/L.

4.1 GROUNDWATER SAMPLING CONCLUSIONS

In general, historical laboratory analytical data indicates that PCE concentration levels in monitoring wells have fluctuated over time, dating back to the first analysis by Converse in August 2000. Compared to the concentrations of PCE detected in June 2007, nine of the ten monitoring wells sampled this quarter showed decreased PCE concentrations and one increased. The estimated PCE plume area greater than 1,000ug/l for the shallow aquifer represented on Figure 5 is smaller than in previous sampling events due to the lower detected concentrations.

It is not clear however, whether this is a benefit of low-flow sampling or not. However, low-flow sampling is believed to provide improved sample accuracy and precision. This sampling method minimizes disturbance of wells and the surrounding formation and samples collected by this method represent a smaller section of the formation that allows for improved characterization of contaminant distribution over time and space. There is also an overall increase in sample reproducibility and reduction in sample variability (ASTM D 6771). Results of subsequent low-flow sampling events will be evaluated to better understand the observed changes in PCE concentrations and the estimated plume area.

Based on the groundwater monitoring results obtained during previous sampling events, it appears that the PCE groundwater plume is approximately 550 feet wide beneath the mall and a minimum of 3,300 feet long. The groundwater plume is relatively narrow and may follow an old paleochannel within the alluvial sediments.

4.2 REMEDIAL EFFORTS AND ASSESSMENTS

Maryland Square LLC (MS), owner of the former Maryland Square Shopping Center site, completed demolition of the buildings at the site in July 2006. According to MS' property management firm, CB Richard Ellis, plans for development of the property have not been selected.

A source removal Corrective Action Plan was submitted to NDEP in early December 2006 and additional soil investigations were performed in the source area during January 2007. An offsite soil vapor survey was conducted during March 2007 on the east side of the Mall property and in the residential area east of the Mall. In light of the data from both these investigations, the NDEP is reevaluating the onsite and offsite remedial approach.

- American Society for Testing and Materials International, 2002. Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations, Designation: D 6771-02.
- Converse Consultants, 2000. Offsite Investigation, Maryland Square Shopping Center, Las Vegas, NV dated November 28, 2000.
- ----, 2001. A through K Data Research Report, dated August 22, 2001.
- ----, 2002a. Work Plan Additional Site Investigation, dated January 11, 2002.
- ----, 2002b. Additional Soil and Groundwater Investigation, dated November 13, 2002.
- ----, 2003a. Additional Soil and Groundwater Investigation, dated May 16, 2003.
- ----, 2003b. Preliminary Corrective Action Plan (CAP), dated June 27, 2003.
- ----, 2003c. Work Plan Additional Site Activities, dated September 12, 2003.
- ----, 2003d. Groundwater Monitoring Report 3rd Quarter 2003, dated October 31, 2003.
- ----, 2004. Well Installation/Slug Testing/Groundwater Monitoring Report 4th Quarter 2003 and 1st Quarter 2004, dated March 2004.
- NDEP, 2007. Letter titled: Frequency of Groundwater Monitoring, Maryland Square Site, 3661 South Maryland Parkway, Las Vegas, NV, Facility ID: H-000086. March 1, 2007.
- NDEP, 2007. Letter titled: Request to Modify Groundwater Sampling Procedures. September 10, 2007.
- Puls, Robert W. and Barcelona, Michael J., 1996. Ground Water Issue: Low-flow (Minimal Drawdown) Ground-Water Sampling Procedures. United States Environmental Protection Agency, Office of Research and Development, Publication EPA/540/S-95/504.
- SECOR International Incorporated, 2004. Preliminary Well Assessment, Monitoring Well MW-11, West of Dillard's Boulevard Mall Property, Las Vegas, NV, dated March 29, 2004.
- URS, 2004. Revised Work Plan, Proposed Subsurface Investigation, Former Al Phillips the Cleaner Site, Maryland Square Shopping Center, Las Vegas, NV, dated September 10, 2004.
- URS, 2005. Subsurface Investigation, Former Al Phillips the Cleaner Site, Maryland Square Shopping Center, Las Vegas, NV, dated July 11, 2005.
- URS, 2005. Proposed Remedial Pilot Study, Former Al Phillips the Cleaner Site, Maryland Square Shopping Center, Las Vegas, NV, dated December 27, 2005.

- URS, 2006. Source Removal Corrective Action Plan, Former Al Phillips Facility, Al Phillips the Cleaner, Maryland Square Shopping Center, 3661 South Maryland Parkway, Las Vegas, NV. November 13, 2006.
- URS, 2007. Source Area Soil Assessment, Former Al Phillips Facility, Al Phillips the Cleaner, Maryland Square Shopping Center, 3661 South Maryland Parkway, Las Vegas, NV. February 23, 2007.
- URS, 2007. Quarterly Groundwater Sampling, 1st Quarter 2007, Al Phillips the Cleaner, Maryland Square Shopping Center, 3661 South Maryland Parkway, Las Vegas, NV. April 2, 2007.
- URS, 2007. Quarterly Groundwater Sampling, 2nd Quarter 2007, Al Phillips the Cleaner, Maryland Square Shopping Center, 3661 South Maryland Parkway, Las Vegas, NV. July 25, 2007.
- Wiedemeier, T. H., et al. 1998. Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water. U.S. Environmental Protection Agency, Office of Research and Development, Publication U.S. EPA/600/R-98/128.
- Yeskis, Douglas and Zavala, Bernard, 2002. Ground Water Forum Issue Paper: Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response, Publication EPA/542/S-02/001.

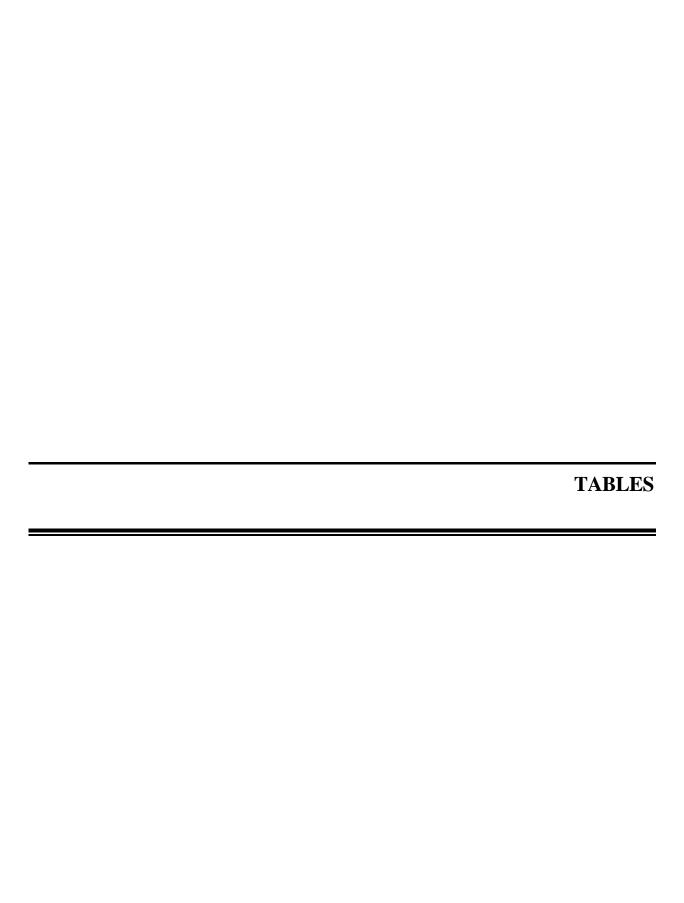


TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

	Install	Top of Casing	Screen	Sample	GROUNDWATER DEPT	TH/ELEVATION DATA
Well ID	Date	(Elevation)	Depth (in ft)	Date	Depth to Water	Elevation
					(in ft.)	(in ft.)
			SHAL	LOW WE		
		1,991.81		Oct 00	17.54	1974.27
				Sep 02	17.90	1974.14
				May 03	18.70	1973.34
				Sept 03	18.97	1973.07
				Jan 04	19.30	1972.74
				May 05	15.24	1976.80
				Sept 05	16.74	1975.30
MW-1	Aug-00	1,992.04	10-30	Dec 05	17.61	1974.43
		-,		Mar 06	18.42	1973.62
				Jun 06	NM	NM
				Oct 06	18.30	1973.74
				Dec 06	18.88	1973.16
				Mar 07	20.08	1971.96
				Jun 07	19.81	1972.23
		1.002.70		Sep 07	18.39	1973.65
		1,983.79		Oct 00	15.52	1968.27
		1,983.99		Sep 02	16.62	1967.37
		<u> </u>		May 03	17.15	1966.84
				Sept 03	17.70	1966.27
		1,983.97	10-32	Jan 04	18.25	1965.72
				May 05	14.65	1969.32
MW-2	Oct-00			Dec 05	16.00	1967.97
				Mar 06	NM	NM
				Jun 06	17.55	1966.42
				Oct 06	17.25	1966.72
				Dec 06	17.60	1966.37
				Mar 07	18.84	1965.13
				Jun 07	19.01	1964.96
		1 004 10		Sep 07	17.94	1966.03
		1,984.19		Oct 00	15.95	1968.24
		1,984.46		Sep 02	17.20	1967.26
				May 03	17.70	1966.76
				Sept 03	18.35	1966.08
				Jan 04	19.25	1965.18 1969.21
				May 05 Dec 05	15.22 16.45	1967.98
MW-3	Oct-00		10-32	Mar 06	NM	NM
		1,984.43		Jun 06	18.38	1966.05
		1,704.43			17.88	1966.55
				Oct 06 Dec 06	18.26	1966.17
				Mar 07	19.86	1964.57
				Jun 07	20.23	1964.20
					18.99	1965.44
				Sep 07	18.99	1903.44

TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

W.II ID	Install	Top of Casing	Screen	Sample	GROUNDWATER DEPI	TH/ELEVATION DATA
Well ID	Date	(Elevation)	Depth (in ft)	Date	Depth to Water (in ft.)	Elevation (in ft.)
		1,989.68		Oct 00	16.95	1972.73
		1,989.87		Sep 02	NM	NM
		1,909.07		May 03	18.71	1971.16
				Sept 03	19.05	1970.80
				Jan 04	19.86	1969.99
				May 05	15.83	1974.02
MW-4	Oct-00		10-32	Dec 05	17.62	1972.23
1,2,,,	000		10 02	Mar 06	NM	NM
		1,989.85		Jun 06	18.36	1971.49
				Oct 06	18.34	1971.51
				Dec 06	NM	NM
				Mar 07	NM	NM
				Jun 07	NM	NM
				Sep 07	18.96	1970.89
		1,988.93		Oct 00	16.20	1972.73
				Sep 02	17.00	1972.18
				May 03	17.80	1971.38
				Sept 03	18.07	1971.11
				Jan 04	18.65	1970.53
	Oct-00			May 05	14.87	1974.31
MW-5		1,989.18	10-32	Dec 05	16.80	1972.38
				Mar 06	NM	NM
				Jun 06	17.40	1971.78
				Oct 06	17.46	1971.72
				Dec 06	18.01	1971.17
				Mar 07	19.30	1969.88
				Jun 07	19.12	1970.06
		1 000 72		Sep 07	17.85	1971.33
		1,988.72	ł	Oct 00	17.41	1971.31
				Sep 02 May 03	18.26 18.87	1970.75 1970.14
				Sept 03	19.25	1969.76
				Jan 04		1969.76
					19.74	
				May 05 Sept 05	16.21 17.26	1972.80 1971.75
MW-6	Oct-00		10-32	Dec 05	17.88	1971.73
141 44 -0	OC1-00	1,989.01	10-32	Mar 06	NM	NM
				Jun 06	18.80	1970.21
				Oct 06	18.73	1970.21
				Dec 06	19.18	1969.83
				Mar 07	20.40	1968.61
				Jun 07	20.28	1968.73
				Sep 07	19.00	1970.01
				Sep 07	19.00	19/0.01

TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

WILL	Install	Top of Casing	Screen	Sample	GROUNDWATER DEP	TH/ELEVATION DATA
Well ID	Date	(Elevation)	Depth	Date	Depth to Water	Elevation
			(in ft)		(in ft.)	(in ft.)
		1 000 29		Sep 02	18.27	1972.01
		1,990.28		May 03	16.60	1973.68
				Sept 03	16.79	1973.46
				Jan 04	17.32	1972.93
				May 05	13.86	1976.39
				Sept 05	14.97	1975.28
MW-7	Sam 02		10-30	Dec 05	15.45	1974.80
IVI VV - /	Sep 02	1,990.25	10-30	Mar 06	16.41	1973.84
		1,990.23		Jun 06	16.50	1973.75
				Oct 06	16.50	1973.75
				Dec 06	16.87	1973.38
				Mar 07	18.19	1972.06
				Jun 07	18.08	1972.17
				Sep 07	16.31	1973.94
		1,994.25		Sep 02	18.55	1975.70
		1,994.23		May 03	19.50	1974.75
		1,994.23		Sept 03	19.55	1974.68
			10-30	Jan 04	19.91	1974.32
				May 05	15.51	1978.72
				Dec 05	18.48	1975.75
MW-8	Sep 02			Mar 06	NM	NM
				Jun 06	18.89	1975.34
				Oct 06	19.12	1975.11
				Dec 06	19.60	1974.63
				Mar 07	20.56	1973.67
				Jun 07	20.31	1973.92
				Sep 07	19.14	1975.09
		1,983.81		Sep 02	18.51	1965.30
		1,905.01		May 03	18.65	1965.16
				Sept 03	19.45	1964.35
				Jan 04	20.32	1963.48
				May 05	16.76	1967.04
				Sept 05	16.95	1966.85
MW-10	Sep 02		10-30	Dec 05	17.64	1966.16
1/1 // -10	Sep 02	1,983.80	10-30	Mar 06	19.25	1964.55
		1,983.80		Jun 06	17.90	1965.90
				Oct 06	19.00	1964.80
				Dec 06	19.21	1964.59
				Mar 07	20.84	1962.96
				Jun 07	21.39	1962.41
				Sep 07	20.38	1963.42
				Sep 02	24.22	1956.02
MXX7 11	San O2	1 000 24	13.5-33.5	May 03	24.25	1955.99
MW-11	Sep 02	1,980.24	13.3-33.3	Sept 03	25.62	1954.62
				Jan 04	26.22	1954.02
				May 05	22.55	1957.69
				Mar 06	NM	NM

TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

W 11 FD	Install	Top of Casing	Screen	Sample	GROUNDWATER DEP	TH/ELEVATION DATA
Well ID	Date	(Elevation)	Depth	Date	Depth to Water	Elevation
			(in ft)		(in ft.)	(in ft.)
				Jun 06	NM	NM
M/XX/ 11	San 02	1,980.24	13.5-33.5	Oct 06	NM	NM
MW-11	Sep 02	1,500.24	15.5-55.5	Dec 06	NM	NM
				Mar 07	25.51	1954.73
				Jun 07	NM	NM
				Sep 07	26.13	1954.11
		1,996.59		Sep 02	14.90	1981.69
		1,990.39		May 03	15.07	1981.52
				Sept 03	15.30	1981.20
				Jan 04	15.40	1981.10
				May 05	12.34	1984.16
				Sept 05	13.45	1983.05
MW-12	Sep 02		13.5-33.5	Dec 05	14.20	1982.30
171 77 - 12	3cp 02	1,996.50	13.3-33.3	Mar 06	15.00	1981.50
		1,770.30		Jun 06	NM	NM
				Oct 06	14.71	1981.79
				Dec 06	15.05	1981.45
				Mar 07	16.55	1979.95
				Jun 07	16.31	1980.19
				Sep 07	14.27	1982.23
		1,984.23		May 03	17.25	1966.98
				Sept 03	17.60	1966.60
		1,984.20		Jan 04	18.00	1966.20
			9-29	May 05	14.76	1969.44
				Sept 05	15.60	1968.60
				Dec 05	16.05	1968.15
MW-13	May-03			Mar 06	17.24	1966.96
		-,, -, -, -,		Jun 06	17.40	1966.80
				Oct 06	17.15	1967.05
				Dec 06	17.47	1966.73
				Mar 07	18.58	1965.62
				Jun 07	18.66	1965.54
				Sep 07	17.41	1966.79
				Jan 04	18.35	1969.54
				May 05	15.02	1972.87
				Dec 05	16.50	1971.39
				Mar 06	17.54	1970.35
MW-14	Nov-03	1,987.89	15-40	Jun 06	17.61	1970.28
				Oct 06	17.42	1970.47
				Dec 06	17.78	1970.11
				Mar 07	18.93	1968.96
				Jun 07	18.80	1969.09
				Sep 07	17.40	1970.49
				Jan 04	15.60	1967.68
				May 05	12.59	1970.69
				Sept 05	13.45	1969.83
1		I	I	Dec 05	13.77	1969.51

TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

Well ID	Install	Top of Casing	Screen Depth	Sample	GROUNDWATER DEF	TH/ELEVATION DATA
Well ID	Date	(Elevation)	(in ft)	Date	Depth to Water	Elevation
			(III It)		(in ft.)	(in ft.)
				Mar 06	15.00	1968.28
MW-15	Nov-03	1,983.28	15-31	Jun 06	15.15	1968.13
				Oct 06	14.91	1968.37
				Dec 06	15.17	1968.11
				Mar 07	16.31	1966.97
				Jun 07	16.16	1967.12
				Sep 07	14.80	1968.48
				Jan 04	26.22	1954.41
				May 05	23.41	1957.22
				Sept 05	24.12	1956.51
		1,980.63		Dec 05	24.21	1956.42
				Mar 06	25.06	1955.57
MW-16	Nov-03		19-35	Jun 06	26.05	1954.58
				Oct 06	25.67	1954.96
				Dec 06	25.56	1955.07
				Mar 07	26.33	1954.30
				Jun 07	27.28	1953.35
				Sep 07	27.03	1953.60
			15-30	May 05	15.07	1975.85
				Dec 05	17.05	1973.87
				Mar 06	NM	NM
MW-17				Jun 06	NM	NM
(4-inch)	Apr-05	1,990.92		Oct 06	17.91	1973.01
(4-IIICII <i>)</i>				Dec 06	18.41	1972.51
				Mar 07	19.63	1971.29
				Jun 07	19.48	1971.44
				Sep 07	17.91	1973.01
				May 05	8.71	1954.16
				Sept 05	9.69	1953.18
				Dec 05	9.70	1953.17
				Mar 06	10.21	1952.66
MW-18	Apr-05	1,962.87	5-25	Jun 06	11.64	1951.23
(4-inch)	Apr-03	1,704.07	5-25	Oct 06	11.21	1951.66
				Dec 06	10.98	1951.89
				Mar 07	11.36	1951.51
				Jun 07	12.53	1950.34
				Sep 07	12.45	1950.42

TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

Well ID	Install	Top of Casing	Screen Depth	Sample	GROUNDWATER DEP	TH/ELEVATION DATA
well ID	Date	(Elevation)	(in ft)	Date	Depth to Water (in ft.)	Elevation (in ft.)
				Jan 04	25.65	1954.61
				May 05	22.70	1957.56
	Nov-03			Dec 05	23.65	1956.61
				Mar 06	NM	NM
MW-19		1,980.26	19-35	Jun 06	25.55	1954.71
141 44 - 17	1404-03	1,700.20	17-33	Oct 06	25.23	1955.03
				Dec 06	25.01	1955.25
				Mar 07	25.77	1954.49
				Jun 07	26.84	1953.42
				Sep 07	26.41	1953.85
				Jan 04	25.50	1954.49
		1,979.99		May 05	22.58	1957.41
				Dec 05	23.55	1956.44
				Mar 06	NM	NM
MW-20	Nov-03		19-35	Jun 06	25.48	1954.51
141 44 - 20	1107 03			Oct 06	25.04	1954.95
				Dec 06	24.85	1955.14
				Mar 07	26.63	1953.36
				Jun 07	26.76	1953.23
				Sep 07	26.30	1953.69
		1,979.56	19-35	Jan 04	24.72	1954.84
				May 05	21.76	1957.80
				Sept 05	22.70	1956.86
				Dec 05	22.85	1956.71
				Mar 06	23.46	1956.10
MW-21	Nov-03			Jun 06	24.68	1954.88
				Oct 06	24.35	1955.21
				Dec 06	24.15	1955.41
				Mar 07	24.87	1954.69
				Jun 07	25.95	1953.61
				Sep 07	25.44	1954.12
				May 05	23.04	1951.72
				Sept 05	24.18	1950.58
				Dec 05	24.30	1950.46
				Mar 06	24.68	1950.08
MW-22	Apr-05	1,974.76	15-35	Jun 06	25.91	1948.85
(4-inch)		1,217.10	15 55	Oct 06	25.79	1948.97
				Dec 06	25.49	1949.27
				Mar 07	24.73	1950.03
				Jun 07	26.91	1947.85
				Sep 07	26.90	1947.86

TABLE 1
SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS
Maryland Square Shopping Center

W.II ID	Install	Top of Casing	Screen	Sample	GROUNDWATER DEPT	TH/ELEVATION DATA
Well ID	Date	(Elevation)	Depth (in ft)	Date	Depth to Water (in ft.)	Elevation (in ft.)
				May 05	13.06	1949.26
				Dec 05	14.05	1948.27
				Mar 06	NM	NM
MW-23			5-25	Jun 06	15.60	1946.72
(4-inch)	Apr-05	1,962.32		Oct 06	15.48	1946.84
(4-111611)				Dec 06	15.16	1947.16
				Mar 07	15.12	1947.20
				Jun 07	16.40	1945.92
				Sep 07	16.61	1945.71
				May 05	10.72	1950.02
				Sept 05	11.75	1948.99
				Dec 05	11.65	1949.09
				Mar 06	12.10	1948.64
MW-24	Apr-05	1,960.74	5-25	Jun 06	13.16	1947.58
(4-inch)	71pi 03		3 23	Oct 06	13.06	1947.68
				Dec 06	12.80	1947.94
				Mar 07	12.88	1947.86
				Jun 07	13.94	1946.80
				Sep 07	14.24	1946.50
		1,960.74	5-25	May 05	16.01	1944.73
				Sept 05	17.45	1943.29
				Dec 05	16.85	1943.89
				Mar 06	17.30	1943.44
MW-25	Apr-05			Jun 06	18.64	1942.10
(4-inch)	11p1 00			Oct 06	18.75	1941.99
				Dec 06	18.61	1942.13
				Mar 07	17.72	1943.02
				Jun 07	19.31	1941.43
				Sep 07	19.96	1940.78
				Mar 06	15.60	1937.88
				Jun 06	17.00	1936.48
MW-26				Oct 06	17.17	1936.31
(4-inch)	Mar-06	1953.48	10-35	Dec 06	NM	NM
(i men)				Mar 07	15.66	1937.82
				Jun 07	17.50	1935.98
				Sep 07	18.12	1935.36
				Mar 06	13.48	1930.75
				Jun 06	18.50	1925.73
MW-27	Mar-06			Oct 06	16.16	1928.07
(4-inch)		1944.23	10-35	Dec 06	13.85	1930.38
(Timen)				Mar 07	12.58	1931.65
				Jun 07	18.43	1925.80
				Sep 07	17.85	1926.38

TABLE 1 SUMMARY OF WELL CHARACTERISTICS AND GROUNDWATER ELEVATIONS Maryland Square Shopping Center

Well ID	Install	Top of Casing	Screen	Sample	GROUNDWATER DEPTH/ELEVATION DATA						
well ID	Date	(Elevation)	Depth (in ft)	Date	Depth to Water	Elevation					
			(in ft)		(in ft.)	(in ft.)					
INTERMEDIATE WELL											
		1,992.26		Sep 02	18.46	1973.80					
		1,992.20		May 03	19.15	1973.11					
		1,992.26	1	Sept 03	19.02	1973.24					
			48.5-50	Jan 04	19.05	1973.21					
				May 05	15.36	1976.90					
				Sept 05	17.85	1974.41					
MW-9	Sep-02			Dec 05	17.68	1974.58					
141 44 - 3	3cp-02			Mar 06	18.55	1973.71					
		1,992.20		Jun 06	NM	NM					
				Oct 06	18.40	1973.86					
				Dec 06	19.00	1973.26					
				Mar 07	20.19	1972.07					
				Jun 07	19.95	1972.31					
				Sep 07	18.51	1973.75					

NOTES: All wells are 2-inch diameter PVC casing and screen, unless indicated.

All measurements are in feet. Top of casing elevation is in feet above mean sea level.

All wells installed prior to September 2003 were resurveyed in September of 2003.

NM = Not Measured.

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	рН	Temperature (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
				SHALLOW WE	LLS			
	Jan-04	6.97	22.50	3.48	0.93	NM	NM	NM
	May-05	7.02	26.04	3.98	5.43	110	441	NM
	Sep-05	7.08	27.50	4.16	6.99	129	64	2.7
	Dec-05	6.98	26.90	5.10	2.01	404	290	3.2
MW-1	Mar-06	**	23.10	5.62	**	545	>999	3.7
	Jun-06	NM	NM	NM	NM	NM	NM	NM
	Oct-06	6.32	26.74	3.71	4.61	129	81	2.4
	Dec-06	6.74	26.86	4.44	5.12	111	>999	2.8
	Jun-07	7.02	25.70	2.29	6.24	468	611	1.4
	Jan-04	7.05	23.20	3.10	1.13	NM	NM	NM
	May-05	6.93	23.40	3.47	4.82	193	698	NM
	Dec-05	6.63	25.40	4.82	2.67	264	360	3.1
MW-2	Mar-06	NM	NM	NM	NM	NM	NM	NM
101 00 -2	Jun-06	**	24.90	3.70	6.98	116	728	2.4
	Oct-06	6.12	24.41	3.48	5.11	161	20	2.2
	Dec-06	6.78	24.53	4.19	4.94	241	28	2.7
	Jun-07	6.98	24.38	3.52	5.65	305	539	2.3
	Jan-04	6.87	22.40	2.91	0.97	NM	NM	NM
	May-05	6.99	26.00	2.88	2.54	149	**	NM
	Dec-05	6.55	27.30	4.69	0.88	33	100	3.0
MW-3	Mar-06	NM	NM	NM	NM	NM	NM	NM
1/1 // -3	Jun-06	**	26.40	3.76	5.61	-32	285	2.4
	Oct-06	5.91	26.71	3.90	2.04	279	26	2.5
	Dec-06	6.69	26.74	4.80	2.89	9	272	3.1
	Jun-07	7.06	25.86	3.70	3.59	43	605	2.4
	Jan-04	6.95	22.00	2.71	1.23	NM	NM	NM
	May-05	6.83	24.20	3.73	3.68	160	664	NM
	Dec-05	6.68	25.90	4.90	3.22	219	670	3.1
MW-4	Mar-06	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾
141 44 - 4	Jun-06	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾
	Oct-06	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾
	Dec-06	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾
	Jun-07	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾	NM ⁽¹⁾

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	рН	Temperature (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	Jan-04	6.72	22.30	2.61	1.20	NM	NM	NM
	May-05	7.09	25.40	2.59	4.56	184	**	NM
	Dec-05	6.78	26.80	5.28	1.51	377	>999	3.3
MW-5	Mar-06	NM	NM	NM	NM	NM	NM	NM
IVI VV - 5	Jun-06	**	26.60	3.80	6.93	126	>999	2.4
	Oct-06	6.23	26.68	3.51	4.82	99	21	2.2
	Dec-06	6.81	26.46	4.49	5.36	93	134	2.9
	Jun-07	7.04	25.19	3.44	6.51	460	375	2.2
	Jan-04	6.97	22.40	2.31	1.19	NM	NM	NM
	May-05	6.91	25.90	2.35	2.81	123	**	NM
	Sep-05	6.99	26.90	3.95	6.23	-119	34	2.3
	Dec-05	6.80	26.50	4.86	1.10	163	220	3.2
MW-6	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	26.70	4.00	6.34	172	707	2.4
	Oct-06	6.27	26.47	3.55	4.12	61	7	2.3
	Dec-06	6.69	26.22	4.23	4.37	239	96	2.7
	Jun-07	7.09	24.85	3.45	5.56	241	352	2.2
	Jan-04	7.00	22.40	2.23	0.93	NM	NM	NM
	May-05	7.10	24.79	1.79	4.03	129	**	NM
	Sep-05	6.97	26.60	4.62	6.22	144	140	3.0
	Dec-05	6.67	23.80	5.33	1.80	472	5	3.4
MW-7	Mar-06	4.67	22.40	6.71	**	634	428	4.2
	Jun-06	**	26.20	4.12	6.58	-14	>999	2.6
	Oct-06	6.24	25.03	3.68	4.41	92	>999	2.3
	Dec-06	6.86	25.11	4.80	5.72	65	>999	3.0
	Jun-07	7.12	25.08	3.59	6.26	129	450	2.2
	Jan-04	6.99	22.00	2.16	1.04	NM	NM	NM
	May-05	7.03	27.70	1.75	3.64	107	**	NM
	Dec-05	6.68	24.10	4.24	2.08	483	>999	2.7
MW-8	Mar-06	NM	NM	NM	NM	NM	NM	NM
141 44 -0	Jun-06	**	27.40	3.66	6.92	185	>999	2.3
	Oct-06	6.24	26.73	3.44	5.86	108	>999	2.2
	Dec-06	6.91	27.01	4.27	6.96	103	>999	2.7
	Jun-07	7.05	27.29	3.52	7.27	287	259	2.3

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	рН	Temperature (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	Jan-04	7.00	24.40	3.13	1.03	NM	NM	NM
	May-05	6.82	28.10	3.20	1.46	-253	25	NM
	Sep-05	6.96	27.90	2.90	3.89	-239	28	1.9
	Dec-05	6.69	23.90	3.66	1.47	-140	57	2.3
MW-10	Mar-06	5.73	21.30	1.77	**	-154	153	1.2
	Jun-06	**	28.10	2.10	3.54	-303	>999	1.5
	Oct-06	6.16	27.11	1.37	1.58	-272	86	0.9
	Dec-06	6.82	26.58	3.90	3.94	-321	144	2.5
	Jun-07	6.95	27.34	3.46	2.71	-179	>999	2.1
	Jan-04	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
	May-05	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
	Mar-06	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
MW-11	Jun-06	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
	Oct-06	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
	Dec-06	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	$NM^{(2)}$
	Jun-07	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾	NM ⁽²⁾
	Jan-04	6.99	22.40	2.15	NM	NM	NM	NM
	May-05	6.76	24.90	2.58	3.22	219	**	NM
	Sep-05	7.03	25.60	4.22	4.96	95	160	2.7
	Dec-05	6.68	22.50	4.98	2.00	523	210	3.2
MW-12	Mar-06	**	23.50	6.65	**	503	91	4.2
	Jun-06	NM	NM	NM	NM	NM	NM	NM
	Oct-06	6.32	26.13	3.94	3.88	112	>999	2.5
	Dec-06	6.61	25.25	4.38	6.15	206	>999	2.8
	Jun-07	7.12	25.52	3.75	3.46	-39	>999	2.4
	Jan-04	6.61	22.20	3.29	1.07	NM	NM	NM
	May-05	6.97	24.50	2.06	4.16	118	>999	NM
	Sep-05	7.07	25.40	3.95	6.85	144	270	2.5
MXX7 12	Dec-05	6.70	24.90	5.03	2.19	250	330	3.2
MW-13	Mar-06	5.45	22.80	3.64	**	68	44	2.3
	Jun-06	**	24.20	3.72	7.11	120	425	2.4
	Oct-06	6.16	24.64	3.63	3.84	169	50	2.3
	Dec-06	6.75	24.53	4.25	4.17	330	94	2.7

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	pН	Temperature (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	Mar-07	6.87	24.00	3.51	9.46	514	308	2.3
MW-13	Jun-07	7.04	23.57	3.49	6.14	411	0	2.2
	Sep-07	6.74	27.72	3.31	4.74	228	3	2.1
	Jan-04	6.99	22.30	2.27	1.30	NM	NM	NM
	May-05	6.95	24.70	3.23	NM	140	NM	NM
	Dec-05	6.78	26.10	5.31	2.07	206	>999	3.3
	Mar-06	5.23	24.20	6.76	**	234	898	4.3
MW-14	Jun-06	**	25.40	3.93	6.75	119	>999	2.5
101 00 - 14	Oct-06	6.06	24.76	3.55	6.96	297	>999	2.3
	Dec-06	6.76	25.65	4.50	4.18	226	350	2.9
	Mar-07	6.82	25.10	3.71	8.08	501	455	2.4
	Jun-07	6.97	24.81	3.72	6.40	299	259	2.4
	Sep-07	6.77	32.19	3.49	4.15	220	103	2.2
	Jan-04	6.35	22.40	2.20	1.00	NM	NM	NM
	May-05	6.99	25.06	2.33	2.85	164	**	NM
	Sep-05	6.97	25.80	3.57	3.48	-24	36	2.3
	Dec-05	6.58	25.90	4.45	1.03	-38	140	2.8
MW-15	Mar-06	4.70	23.90	6.40	**	613	20	4.0
	Jun-06	**	26.00	3.84	4.26	106	300	2.5
	Oct-06	6.17	25.72	3.66	2.01	51	10	2.3
	Dec-06	6.78	25.85	4.68	3.44	28	15	3.0
	Jun-07	6.97	25.26	3.62	3.08	362	37	2.3
	Jan-04	6.97	22.40	2.31	0.68	NM	NM	NM
	May-05	7.12	25.20	2.88	1.10	-4	**	NM
	Sep-05	7.00	24.60	3.42	3.50	-31	520	2.3
	Dec-05	6.74	25.30	3.76	1.30	48	>999	2.4
MW-16	Mar-06	5.15	23.80	5.74	**	162	199	3.6
	Jun-06	**	27.10	3.44	5.56	-64	>999	2.2
	Oct-06	6.25	24.60	3.39	2.00	-145	32	2.2
	Dec-06	6.52	24.39	3.62	2.87	-52	271	1.3
	Jun-07	6.72	24.96	3.27	2.23	94	282	2.1

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	рН	Temperature (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	May-05	6.92	24.10	3.49	5.94	181	22	NM
	Dec-05	6.90	26.80	4.65	2.30	240	6	3.0
	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	NM	NM	NM	NM	NM	NM	NM
MW-17*	Oct-06	6.22	24.91	3.45	7.36	174	2	2.2
	Dec-06	6.86	24.08	4.14	6.81	386	25	2.7
	Mar-07	7.00	24.30	3.56	8.12	350	87	2.3
	Jun-07	7.02	25.03	3.66	7.26	471	37	2.3
	Sep-07	6.74	26.74	3.44	4.95	197	0	2.2
	May-05	7.10	24.30	3.86	5.56	139	>999	NM
	Sep-05	7.10	26.30	4.12	6.21	88	3	2.6
	Dec-05	6.79	25.20	4.73	1.98	420	**	3.0
	Mar-06	5.17	23.30	6.21	**	237	3	3.9
MW-18*	Jun-06	**	25.40	3.61	6.18	166	304	2.3
MI AA - 10 .	Oct-06	6.30	25.54	3.47	4.06	127	0	2.2
	Dec-06	6.80	24.69	4.16	4.30	297	0	2.7
	Mar-07	7.01	22.80	3.44	7.53	286	23	2.2
	Jun-07	7.02	23.94	3.46	5.54	394	24	2.2
	Sep-07	6.81	29.30	3.28	5.43	210	22	2.1
	Jan-04	6.99	22.40	1.90	1.02	NM	NM	NM
	May-05	7.13	25.03	1.86	5.76	130	**	NM
	Dec-05	6.64	24.70	4.74	1.95	388	**	3.0
	Mar-06	NM	NM	NM	NM	NM	NM	NM
MW-19	Jun-06	**	27.10	3.69	7.86	86	>999	2.4
141 44 - 17	Oct-06	6.10	23.91	3.69	4.60	175	>999	2.4
	Dec-06	6.80	23.91	4.38	5.70	595	>999	2.8
	Mar-07	6.93	24.30	3.66	9.08	284	>999	2.3
	Jun-07	7.10	24.46	3.53	6.72	551	>999	2.3
	Sep-07	6.84	27.36	3.40	5.09	201	352	2.2
	Jan-04	6.94	22.60	2.07	1.11	NM	NM	NM
	May-05	7.16	23.56	1.32	4.97	131	**	NM
MW-20	Dec-05	6.76	20.50	4.37	0.77	272	**	2.8
141 44 -20	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	28.60	3.82	6.91	70	736	2.1

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	рН	Temperature (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	Oct-06	6.13	23.66	2.63	4.11	234	>999	1.8
	Dec-06	6.79	23.86	4.11	4.34	245	284	2.6
MW-20	Mar-07	6.92	23.80	3.34	9.84	530	999	2.2
IVI VV -2U	Jun-07	7.04	23.82	3.45	5.39	346	>999	2.2
	Sep-07	6.83	32.45	3.26	4.42	207	248	2.1
	Jan-04	6.91	22.30	2.04	1.08	NM	NM	NM
	May-05	7.07	24.59	2.82	2.88	131	**	NM
	Sep-05	7.06	25.80	4.66	4.07	109	39	2.6
	Dec-05	6.64	24.30	4.60	0.54	264	>999	2.9
MW-21	Mar-06	5.52	23.00	3.58	**	309	140	2.3
	Jun-06	**	28.50	3.50	4.73	112	>999	2.3
	Oct-06	6.24	24.11	3.46	1.99	79	>999	2.2
	Dec-06	6.74	24.02	4.48	2.72	89	617	2.9
	Jun-07	7.03	24.17	3.44	4.22	373	>999	2.2
	May-05	6.79	24.14	3.89	1.68	46	474	NM
	Sep-05	6.90	23.90	4.25	7.16	46	10	2.7
	Dec-05	6.42	24.60	4.20	1.31	213	**	2.7
MW-22*	Mar-06	4.79	24.00	6.09	**	269	30	3.8
101 00 - 22 -	Jun-06	**	26.40	3.39	5.96	376	287	2.2
	Oct-06	5.98	23.79	3.74	2.43	141	11	2.4
	Dec-06	6.48	23.50	4.48	3.52	477	0	2.9
	Jun-07	6.72	24.31	3.77	3.39	137	26	2.4
	May-05	7.00	24.50	3.63	2.56	121	**	NM
	Dec-05	6.71	24.90	4.91	2.13	320	**	3.1
	Mar-06	NM	NM	NM	NM	NM	NM	NM
	Jun-06	**	23.80	3.68	5.77	238	318	2.3
MW-23*	Oct-06	6.27	23.95	3.50	2.51	107	0	2.2
	Dec-06	6.79	24.15	4.21	3.20	2	0	2.7
	Mar-07	NM	NM	NM	NM	NM	NM	NM
	Jun-07	6.99	23.54	3.49	4.23	301	31	2.2
	Sep-07	6.81	25.84	3.31	3.78	204	1	2.1
	May-05	6.97	23.09	3.56	1.48	76	>999	NM
	Sep-05	7.00	25.80	3.83	3.62	5	25	2.4
MW-24*	Dec-05	6.56	25.60	4.46	1.04	183	29	2.7

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	pН	Temperature (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
	Mar-06	4.70	22.60	6.02	**	503	1	3.8
	Jun-06	**	25.10	3.44	5.11	132	201	2.2
	Oct-06	6.17	25.51	3.20	1.22	-23	0	2.0
MW-24*	Dec-06	6.85	25.11	4.13	2.56	62	0	2.6
	Jun-07	7.05	23.24	3.25	2.53	409	23	2.1
	May-05	7.03	23.60	4.00	4.34	141	>999	NM
	Sep-05	7.01	26.20	4.18	5.10	57	30	2.7
	Dec-05	6.63	24.70	5.28	1.35	417	0	3.3
	Mar-06	5.15	23.60	6.67	**	255	94	4.2
MW-25*	Jun-06	**	23.50	3.93	5.74	376	228	2.5
141 44 - 25	Oct-06	6.23	23.59	3.72	3.08	106	0	2.4
	Dec-06	6.74	23.93	4.45	3.75	429	0	2.8
	Mar-07	7.02	23.30	3.72	7.45	258	>999	2.4
	Jun-07	6.96	22.99	3.73	4.51	485	50	2.4
	Sep-07	6.72	27.04	3.52	3.59	195	15	2.3
	Mar-06	6.83	23.80	3.75	2.59	158	0	2.4
	Jun-06	**	24.10	2.32	4.83	305	229	1.5
	Oct-06	6.18	23.71	3.72	2.91	180	0	2.4
MW-26	Dec-06	NM	NM	NM	NM	NM	NM	NM
	Mar-07	6.99	23.50	3.76	7.14	422	>999	2.4
	Jun-07	7.01	23.62	3.51	4.82	517	41	2.5
	Sep-07	6.74	27.08	3.56	3.48	176	5	2.3
	Mar-06	6.83	21.90	3.28	2.44	142	0	2.1
	Jun-06	**	26.10	3.67	4.57	69	626	2.3
	Oct-06	6.20	22.24	3.32	2.84	155	0	2.1
MW-27	Dec-06	6.81	22.22	4.02	4.48	444	507	2.6
	Mar-07	6.97	21.90	3.25	6.96	181	83	2.1
	Jun-07	7.04	22.15	3.26	4.14	392	238	2.1
	Sep-07	6.76	24.23	3.41	3.40	198	22	2.2
Ave	erage	6.68	24.87	3.74	4.05	192	184	2.5

TABLE 2
SUMMARY OF FIELD WATER QUALITY MEASUREMENTS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample Date	рН	Temperature (°C)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (ntu)	TDS (g/L)
			II	NTERMEDIATE	WELL			
	Jan-04	6.99	22.60	2.50	1.18	NM	NM	NM
	May-05	7.14	26.12	2.68	7.56	130	296	NM
	Sep-05	7.17	27.10	1.81	6.58	111	4	1.2
	Dec-05	6.88	26.60	2.45	2.49	123	33	1.6
MW-9	Mar-06	5.06	25.90	2.08	**	496	>999	1.3
	Jun-06	NM	NM	NM	NM	NM	NM	NM
	Oct-06	6.30	25.71	2.38	4.11	86	0	1.5
	Dec-06	6.81	25.46	2.96	5.09	233	0	1.9
	Jun-07	7.12	26.09	2.47	5.60	428	0	1.6
Ave	erage	6.68	25.70	2.42	4.66	230	56	1.5

NOTES: * = Wells installed in Apr 2005. ** = Instrument failure. NM = Not Measured.

mV = millivolts. Ntu = Nephelometric Turbidity Units.

^{(1) =} Monitoring Well MW-4 was not sampled due to blockage in well casing.

^{(2) =} Monitoring Well MW-11 was not sampled due to detection of floating hydrocarbons in the well.

 $^{^{\}circ}$ C = degrees Celsius. uS = microsiemens (equivalent to umhos). mg/L = milligrams per liter.

TABLE 3
SELECTED VOC CONCENTRATIONS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample	Concentration (in ug/L)					
well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene			
		SHALLOW W	ELLS				
	Aug 00	2300.0	ND	ND			
	Oct 00	NS	NS	NS			
	Sep 02	2000.0	ND	ND			
	May 03	870.0	ND	ND			
	Sep 03	2300.0	ND	ND			
	Nov 03	-	=	=			
	Jan 04	1700.0	ND	ND			
MW-1	May 05	3500.0	ND	ND			
	Sep 05	1700.0	ND	ND			
	Dec 05	820.0	ND	ND			
	Mar 06	420.0	ND	ND			
	Jun 06	NS	NS	NS			
	Oct 06	1100.0	ND	ND			
	Dec 06	1300.0	ND	ND			
	Jun 07	450.0	ND	ND			
	Oct 00	3000.0	18.0	18.0			
	Sep 02	3000.0	13.0	13.0			
	May 03	1400.0	ND	ND			
	Sep 03	1700.0	ND	ND			
<u> </u>	Nov 03	-	-	-			
<u> </u>	Jan 04	1700.0	ND	ND			
MW-2	May 05	2050.0	17.0	9.7			
<u> </u>	Dec 05	2900.0	ND	ND			
	Mar 06	NS	NS	NS			
	Jun 06	1600.0	ND	ND			
	Oct 06	1900.0	ND	ND			
	Dec 06	1300.0	ND	ND			
	Jun 07	1400.0	ND	ND			
	Oct 00	98.0	ND	ND			
	Sep 02	ND	ND	ND			
	May 03	6.9	ND	ND			
	Sep 03	12.0	ND	ND			
	Nov 03	-	-	-			
	Jan 04	6.7	ND	ND			
MW-3	May 05	ND	ND	ND			
	Dec 05	ND	ND	ND			
	Mar 06	NS	NS	NS			
	Jun 06	ND	ND	ND			
	Oct 06	ND 1.2	ND	ND			
	Dec 06	1.2	ND	ND			
	Jun 07	ND	ND	ND			

TABLE 3
SELECTED VOC CONCENTRATIONS IN MONITORING WELLS
Maryland Square Shopping Center

W 11 ID	Sample	Concentration (in ug/L)				
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene		
	Oct 00	14.0	ND	ND		
	Sep 02	25.0	ND	ND		
	May 03	24.0	ND	ND		
	Sep 03	100.0	ND	ND		
	Nov 03	-	-	-		
	Jan 04	220.0	ND	ND		
MW-4	May 05	25.0	ND	ND		
	Dec 05	15.0	ND	ND		
	Mar 06	NS	NS	NS		
	Jun 06	27.0	ND	ND		
	Oct 06	$NS^{(1)}$	$NS^{(1)}$	$NS^{(1)}$		
	Dec 06	NS ⁽¹⁾	NS ⁽¹⁾	NS ⁽¹⁾		
Ī	Jun 07	NS ⁽¹⁾	NS ⁽¹⁾	NS ⁽¹⁾		
	Oct 00	100.0	ND	NS ⁽¹⁾		
	Sep 02	110.0	ND	ND		
	May 03	240.0	ND	ND		
	Sep 03	220.0	ND	ND		
	Nov 03	-	-	-		
	Jan 04	370.0	ND	ND		
MW-5	May 05	146.0	ND	ND		
	Dec 05	93.0	ND	ND		
	Mar 06	NS	NS	NS		
	Jun 06	220.0	ND	ND		
	Oct 06	67.0	ND	ND		
	Dec 06	130.0	ND	ND		
	Jun 07	550.0	ND	ND		
	Oct 00	2200.0	13.0	8.1		
	Sep 02	1000.0	41.0	14.0		
	May 03	710.0	22.0	ND		
	Sep 03	1300.0	ND	ND		
	Nov 03	-	-	-		
	Jan 04	2400.0	ND	ND		
MW-6	May 05	2090.0	13.0	11.0		
141 44 -0	Sep 05	890.0	13.0	23.0		
	Dec 05	530.0	41.0	21.0		
Ĺ	Mar 06	NS	NS	NS		
Ĺ	Jun 06	1100.0	ND	ND		
	Oct 06	1300.0	ND	ND		
Ĺ	Dec 06	810.0	9.9	8.9		
	Jun 07	1300.0	ND	ND		

TABLE 3
SELECTED VOC CONCENTRATIONS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample	Concentration (in ug/L)					
well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene			
	Sep 02	ND	ND	ND			
-	May 03	1.7	ND	ND			
	Sep 03	2.0	ND	ND			
	Nov 03	-	-	-			
	Jan 04	11.0	ND	ND			
	May 05	ND	ND	ND			
MW-7	Sep 05	3.3	ND	ND			
	Dec 05	1.2	ND	ND			
	Mar 06	1.5	ND	ND			
	Jun 06	2.2	ND	ND			
[Oct 06	2.9	ND	ND			
	Dec 06	2.1	ND	ND			
	Jun 07	1.1	ND	ND			
	Sep 02	5.4	ND	ND			
	May 03	3.2	ND	ND			
	Sep 03	3.7	ND	ND			
	Nov 03	-	-	-			
	Jan 04	4.7	ND	ND			
MW-8	May 05	5.6	5.6	ND			
W1 VV -0	Dec 05	3.6	ND	ND			
	Mar 06	NS	NS	NS			
	Jun 06	2.6	ND	ND			
	Oct 06	3.4	ND	ND			
	Dec 06	4.3	ND	ND			
	Jun 07	2.8	ND	ND			
	Sep 02	ND	ND	ND			
	May 03	ND	ND	ND			
	Sep 03	15.0	ND	ND			
	Nov 03	-	-	-			
	Jan 04	ND	ND	ND			
	May 05	ND	ND	ND			
MW-10	Sep 05	ND	ND	ND			
[Dec 05	ND	ND	ND			
[Mar 06	ND	ND	ND			
[Jun 06	ND	ND	ND			
[Oct 06	ND	ND	ND			
[Dec 06	1.0	ND	ND			
	Jun 07	ND	ND	ND			
	Sep 02	ND	ND	ND			
	May 03	ND	ND	ND			
MW-11	Sep 03	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			
	Nov 03	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			
	Jan 04	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			

TABLE 3
SELECTED VOC CONCENTRATIONS IN MONITORING WELLS
Maryland Square Shopping Center

Wall ID	Sample	Concentration (in ug/L)					
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene			
	May 05	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			
	Dec 05	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			
Ī	Mar 06	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			
MW-11	Jun 06	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			
	Oct 06	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			
	Dec 06	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			
	Jun 07	NS ⁽²⁾	NS ⁽²⁾	NS ⁽²⁾			
	Sep 02	ND	ND ND	ND ND			
	May 03	1.3	ND	ND			
	Sep 03 Nov 03	14.0	ND	ND -			
}	Jan 04	6.1	ND	ND			
	May 05	ND	ND	ND ND			
MW-12	Sep 05	1.1	ND ND	ND ND			
101 00 - 12	Dec 05	1.2	ND ND	ND ND			
 	Mar 06	1.1	ND ND	ND ND			
<u> </u>	Jun 06	NS	NS	NS			
<u> </u>	Oct 06	ND ND	ND	ND			
	Dec 06	1.4	ND	ND			
	Jun 07	ND	ND	ND			
	May 03	2100.0	ND	ND			
	Sep 03	2800.0	ND	ND			
	Nov 03	-	-	-			
	Jan 04	2700.0	ND	ND			
	May 05	5310.0	ND	ND			
	Sep 05	2600.0	ND	ND			
MXX 12	Dec 05	3400.0	ND	ND			
MW-13	Mar 06	3700.0	ND	ND			
Ī	Jun 06	2900.0	ND	ND			
	Oct 06	2800.0	ND	ND			
	Dec 06	3200.0	ND	ND			
	Mar 07	2500.0	ND	ND			
	Jun 07	3700.0	ND	ND			
	Sep 07	2000.0	ND	ND			
	Nov 03	1900.0	ND	ND			
[Jan 04	2100.0	ND	ND			
	May 05	2920.0	5.5	ND			
MW-14	Dec 05	3400.0	ND	ND			
141 44 - 14	Mar 06	2500.0	ND	ND			
	Jun 06	1800.0	ND	ND			
	Oct 06	1900.0	ND	ND			
	Dec 06	3500.0	ND	ND			
	Mar 07	1900.0	ND	ND			

TABLE 3
SELECTED VOC CONCENTRATIONS IN MONITORING WELLS
Maryland Square Shopping Center

Well ID	Sample	Concentration (in ug/L)					
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene			
MW-14	Jun 07	1700.0	ND	ND			
	Sep 07	650.0	ND	ND			
	Nov 03	5.2	ND	ND			
	Jan 04	2.7	ND	ND			
	May 05	ND	ND	ND			
	Sep 05	3.6	ND	ND			
MW-15	Dec 05	5.0	ND	ND			
171 77 -13	Mar 06	4.5	ND	ND			
	Jun 06	4.4	ND	ND			
	Oct 06	3.3	ND	ND			
	Dec 06	3.7	ND	ND			
	Jun 07	3.0	ND	ND			
	Nov 03	ND	ND	ND			
	Jan 04	ND	ND	ND			
	May 05	ND	ND	ND			
	Sep 05	ND	ND	ND			
MW-16	Dec 05	ND	ND	ND			
101 00 - 10	Mar 06	ND	ND	ND			
	Jun 06	ND	ND	ND			
	Oct 06	ND	ND	ND			
	Dec 06	ND	ND	ND			
	Jun 07	ND	ND	ND			
	May 05	520.0	ND	ND			
	Dec 05	470.0	ND	ND			
	Mar 06	NS	NS	NS			
	Jun 06	NS	NS	NS			
MW-17	Oct 06	1300.0	ND	ND			
	Dec 06	710.0	ND	ND			
	Mar 07	440.0	ND	ND			
	Jun 07	300.0	ND	ND			
	Sep 07	380.0	ND	ND			
	May 05	1600.0	ND	ND			
	Sep 05	1700.0	ND	ND			
	Dec 05	2400.0	ND	ND			
	Mar 06	1700.0	ND	ND			
MW 10	Jun 06	1600.0	ND	ND			
MW-18	Oct 06	2100.0	ND	ND			
	Dec 06	1400.0	ND	ND			
	Mar 07	1400.0	ND	ND			
	Jun 07	1300.0	ND	ND			
	Sep 07	930.0	ND	ND			

TABLE 3
SELECTED VOC CONCENTRATIONS IN MONITORING WELLS
Maryland Square Shopping Center

Wall ID	Sample	Concentration (in ug/L)							
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene					
	Nov 03	1100.0	ND	ND					
	Jan 04	1200.0	ND	ND					
	May 05	873.0	ND	ND					
	Dec 05	1300.0	ND	ND					
	Mar 06	NS	NS	NS					
MW-19	Jun 06	910.0	ND	ND					
	Oct 06	840.0	ND	ND					
	Dec 06	1200.0	ND	ND					
	Mar 07	890.0	ND	ND					
	Jun 07	870.0	ND	ND					
	Sep 07	510.0	ND	ND					
	Nov 03	1800.0	ND	ND					
	Jan 04	290.0	2.8	ND					
	May 05	1460.0	ND	ND					
	Dec 05	1800.0	ND	ND					
	Mar 06	NS	NS	NS					
MW-20	Jun 06	2100.0	ND	ND					
	Oct 06	2000.0	ND	ND					
	Dec 06	2500.0	ND	ND					
	Mar 07	1500.0	ND	ND					
	Jun 07	1300.0	ND	ND					
	Sep 07	730.0	ND	ND					
	Nov 03	51.0	ND	ND					
	Jan 04	55.0	ND	ND					
	May 05	30.0	ND	ND					
	Sep 05	19.0	2.4	1.5					
MW-21	Dec 05	16.0	1.8	1.3					
N1 VV - Z 1	Mar 06	43.0	ND	ND					
	Jun 06	32.0	ND	ND					
	Oct 06	23.0	ND	ND					
	Dec 06	39.0	ND	ND					
	Jun 07	28.0	ND	ND					
	May 05	ND	ND	ND					
ſ	Sep 05	ND	ND	ND					
ſ	Dec 05	1.0	ND	ND					
MW	Mar 06	ND	ND	ND					
MW-22	Jun 06	ND	ND	ND					
Ī	Oct 06	ND	ND	ND					
ſ	Dec 06	ND	ND	ND					
ľ	Jun 07	ND	ND	ND					
	May 05	1430.0	ND	ND					
MXX 22	Dec 05	1900.0	ND	ND					
MW-23	Mar 06	NS	NS	NS					
	Jun 06	1500.0	ND	ND					

TABLE 3
SELECTED VOC CONCENTRATIONS IN MONITORING WELLS
Maryland Square Shopping Center

Wall ID	Sample	Concentration (in ug/L)						
Well ID	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene				
	Oct 06	2000.0	ND	ND				
	Dec 06	2100.0	ND	ND				
MW-23	Mar 07	2100.0	ND	ND				
	Jun 07	1300.0	ND	ND				
	Sep 07	750.0	ND	ND				
	May 05	ND	ND	ND				
	Sep 05	4.3	ND	ND				
	Dec 05	6.7	ND	ND				
MW-24	Mar 06	6.5	ND	ND				
N1 VV -24	Jun 06	5.6	ND	ND				
	Oct 06	2.6	ND	ND				
	Dec 06	2.6	ND	ND				
	Jun 07	1.0	ND	ND				
	May 05	993.0	ND	ND				
	Sep 05	920.0	ND	ND				
	Dec 05	1000.0	ND	ND				
	Mar 06	970.0	ND	ND				
MXX 25	Jun 06	960.0	ND	ND				
MW-25	Oct 06	1300.0	ND	ND				
	Dec 06	1200.0	ND	ND				
	Mar 07	670.0	ND	ND				
Γ	Jun 07	960.0	ND	ND				
Γ	Sep 07	560.0	ND	ND				
	Mar 06	730.0	ND	ND				
	Jun 06	770.0	ND	ND				
	Oct 06	1100.0	ND	ND				
MW-26	Dec 06	NS	NS	NS				
	Mar 07	790.0	ND	ND				
	Jun 07	960.0	ND	ND				
	Sep 07	620.0	ND	ND				
	Mar 06	220.0	ND	ND				
	Jun 06	350.0	ND	ND				
Ī	Oct 06	380.0	ND	ND				
MW-27	Dec 06	380.0	ND	ND				
	Mar 07	160.0	ND	ND				
	Jun 07	340.0	ND	ND				
	Sep 07	320.0	ND	ND				

TABLE 3 SELECTED VOC CONCENTRATIONS IN MONITORING WELLS Maryland Square Shopping Center

Well ID	Sample	Concentration (in ug/L)						
weii 1D	Date	perchloroethylene (PCE)	trichloroethene (TCE)	cis-1,2-Dichlorethene				
		INTERMEDIATE	WELL					
	Sep 02	670.0	ND	ND				
	May 03	59.0	ND	ND				
	Sep 03	9.2	ND	ND				
	Nov 03	-	-	-				
	Jan 04	10.0	ND	ND				
	May 05	353.0	ND	ND				
MW-9	Sep 05	64.0	ND	ND				
	Dec 05	190.0	ND	ND				
	Mar 06	ND	ND	ND				
	Jun 06	NS	NS	NS				
	Oct 06	160.0	ND	ND				
	Dec 06	45.0	ND	ND				
	Jun 07	170.0	ND	ND				

NOTES: ND = Non-Detect. NS = Not Sampled. '-'cells indicate no data available.

PCE is perchloroethylene (tetrachloroethene). The Maximum Contaminant Level for PCE in drinking water is 5 ug/L.

 $^{^{(1)}}$ = Monitoring Well MW-4 was not sampled due to blockage in well casing.

 $^{^{(2)}}$ = Monitoring Well MW-11 was not sampled due to detection of floating hydrocarbons in the well. ug/L = micrograms per liter.

TABLE 4 SUMMARY OF OTHER ANALYTICAL DATA Maryland Square Shopping Center

					Concentration					
	Sample				(in mg/L)					
Well ID	Date	Total Iron	Dissolved Manganese	Chloride	Nitrate as N	Sulfate	Total Alkalinity	Total Organic Carbon		
	SHALLOW WELLS									
	May 05	ND	ND	180	8.9	1,613	ND	5.1		
	Sep 05	3.7	0.057	180	8.8	1,800	230	6.0		
	Dec 05	5.0	0.027	200	8.1	1,800	190	1.7		
MW-1	Mar 06	24.0	0.230	170	8.4	1,600	250	3.8		
1/1//-1	Jun 06	NS	NS	NS	NS	NS	NS	NS		
	Oct 06	5.1	0.044	210	8.4	1,900	220	2.8		
	Dec 06	20.0	0.240	NA	7.3	NA	NA	2.4		
	Jun 07	16.0	0.140	180	7.3	1,700	210	2.3		
MW-6	May 05	ND	0.040	200	10.5	1,615	ND	6.0		
MW-12	May 05	ND	ND	270	23.9	1,618	16	4.8		
	May 05	ND	ND	170	6.9	1,562	ND	1.7		
	Sep 05	19.0	0.690	170	6.1	1,700	260	3.6		
	Dec 05	7.0	0.110	190	5.9	1,600	220	1.6		
	Mar 06	7.7	0.200	240	7.0	1,500	220	1.7		
MW-13	Jun 06	15.0	0.490	190	7.9	1,600	230	1.7		
10100-13	Oct 06	20.0	0.480	190	6.2	1,700	220	2.7		
	Dec 06	12.0	0.330	200	6.1	1,700	210	2.1		
	Mar 07	9.7	0.270	220	5.9	1,500	210	1.7		
	Jun 07	19.0	0.560	180	6.1	1,600	220	1.4		
	Sep 07	1.6	ND	210	6.2	1,700	220	1.3		
	Sep 05	0.9	0.020	160	5.4	1,800	240	3.3		
	Dec 05	3.7	0.015	180	4.7	1,600	200	1.4		
	Mar 06	2.6	0.012	150	5.4	1,500	220	1.4		
	Jun 06	1.9	ND	200	5.8	1,900	220	1.4		
MW-18	Oct 06	2.1	0.011	180	5.2	1,900	210	1.7		
	Dec 06	2.8	0.019	180	5.0	1,600	210	1.6		
	Mar 07	38.0	0.480	160	4.7	1,500	220	1.5		
	Jun 07	1.8	ND	150	5.1	1,600	210	1.2		
	Sep 07	2.0	ND	190	5.8	1,700	210	1.2		

TABLE 4 SUMMARY OF OTHER ANALYTICAL DATA Maryland Square Shopping Center

		Concentration									
	Sample Date				(in mg/L)						
Well ID		Total Iron	Dissolved Manganese	Chloride	Nitrate as N	Sulfate	Total Alkalinity	Total Organic Carbon			
MW-19	May 05	ND	ND	170	5.9	1,599	19	2.7			
MW-23	May 05	ND	ND	200	7.5	1,596	ND	1.8			
	May 05	ND	ND	180	5.9	1,616	ND	1.7			
	Sep 05	1.2	0.020	170	4.5	1,900	300	4.4			
	Dec 05	3.0	ND	190	4.5	1,900	230	1.3			
	Mar 06	3.4	0.018	160	5.2	1,600	240	2.0			
MW-25	Jun 06	2.1	0.006	220	5.7	1,900	230	1.9			
W1 W -23	Oct 06	3.2	0.020	200	5.2	1,900	280	2.0			
	Dec 06	2.6	0.007	200	4.8	2,000	260	1.7			
	Mar 07	6.0	0.059	190	4.5	1,700	240	1.7			
	Jun 07	1.8	0.005	170	4.7	1,800	240	1.4			
	Sep 07	1.6	0.010	210	5.1	1,800	240	1.2			
Avei	rage	8.0	0.159	170	6.7	1,698	216	2.3			
	•		INTE	RMEDIAT	E WELL	•					
MW-9	May 05	ND	ND	110	5.2	1,094	ND	2.1			

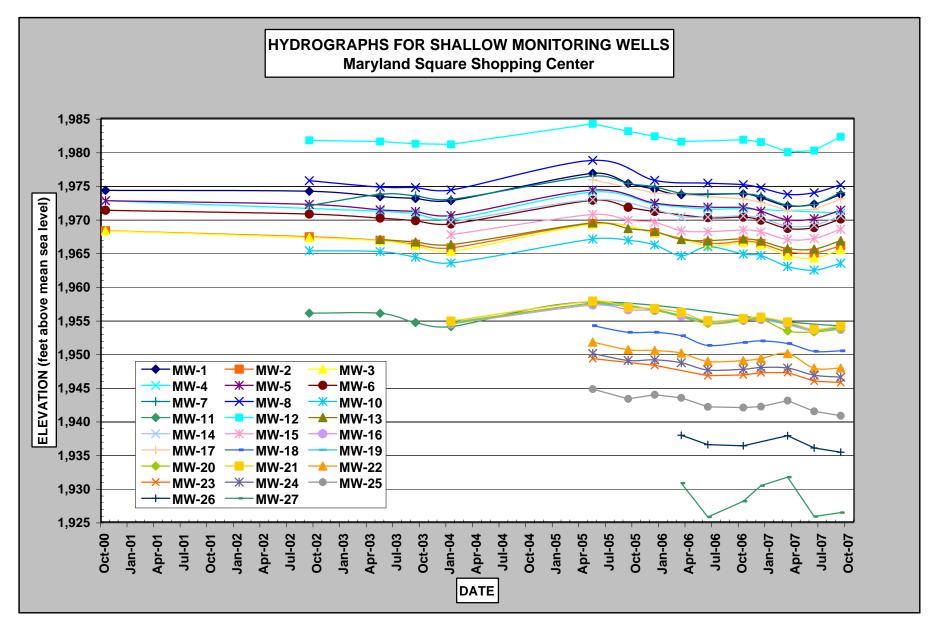
NOTES: ND = Non-Detect. NA = Not Analyzed.

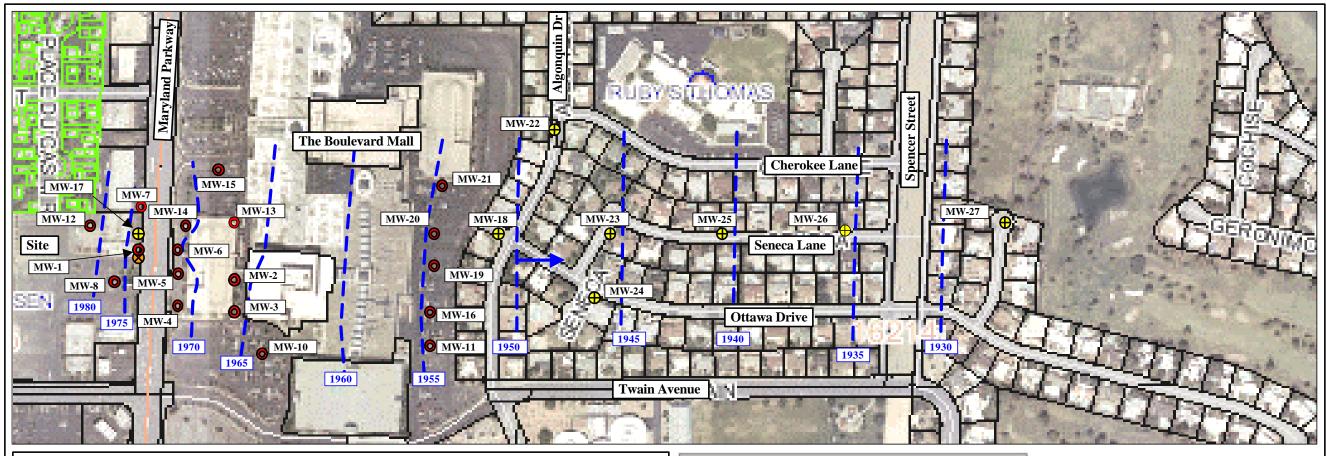
mg/L is milligrams per liter.

The shallow wells are approximately 25 ft. deep; The intermediate well is 30-40 ft. deep.

Source: Clark County Assessors Web Site

Scale: 200 feet




SITE LOCATION MAP

Al Phillips The Cleaner Quarterly Groundwater Sampling Maryland Square Shopping Center 3661 South Maryland Parkway Las Vegas, Nevada

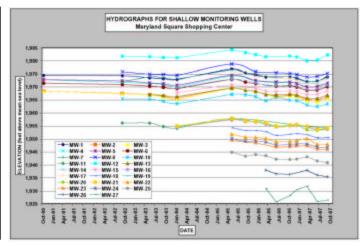

3rd Quarter 2007 Job No. 26698724

FIGURE 2

<u>Well</u>	Elevation	<u>Well</u>	Elevation	<u>Well</u>	Elevation
MW-1	1973.65	MW-12	1982.23	MW-22	1947.86
MW-2	1966.03	MW-13	1966.79	MW-23	1945.71
MW-3	1965.44	MW-14	1970.49	MW-24	1946.50
MW-4	1970.89	MW-15	1968.48	MW-25	1940.78
MW-5	1971.33	MW-16	1953.60	MW-26	1935.36
MW-6	1970.01	MW-17	1973.01	MW-27	1926.38
MW-7	1973.94	MW-18	1950.42	Intermedi	iate Well
MW-8	1975.09	MW-19	1953.85	Well	Elevation
MW-10	1963.42	MW-20	1953.69	MW-9	1973.75
MW-11	1954.11	MW-21	1954.12		

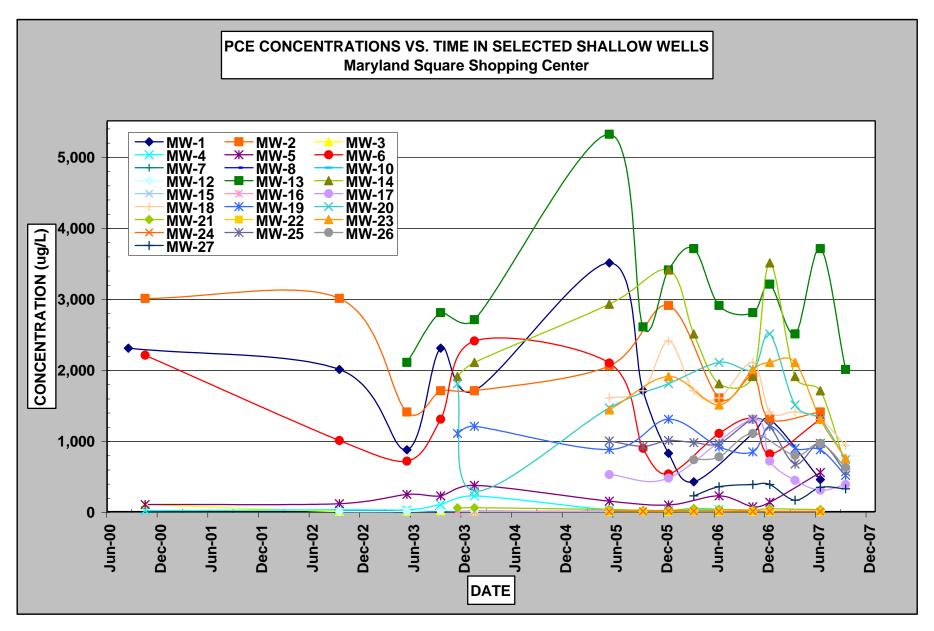
Source: Clark County Assessors Web Site Scale: 0 Feet 200 Feet

- Approximate Location of Shallow Monitoring Well Installed by URS.
- Approximate Location of Intermediate Monitoring Well Installed by URS.
- Approximate Location of Monitoring Well Installed by Converse.
- Groundwater Elevation Contour Line.
- Approximate Direction of Groundwater Flow.

GROUNDWATER ELEVATION CONTOURS FOR SHALLOW WELLS

3rd Quarter 2007 Al Phillips The Cleaner **Quarterly Groundwater Sampling** Maryland Square Shopping Center 3661 South Maryland Parkway Las Vegas, Nevada

3rd Quarter 2007


Job No. 26698724

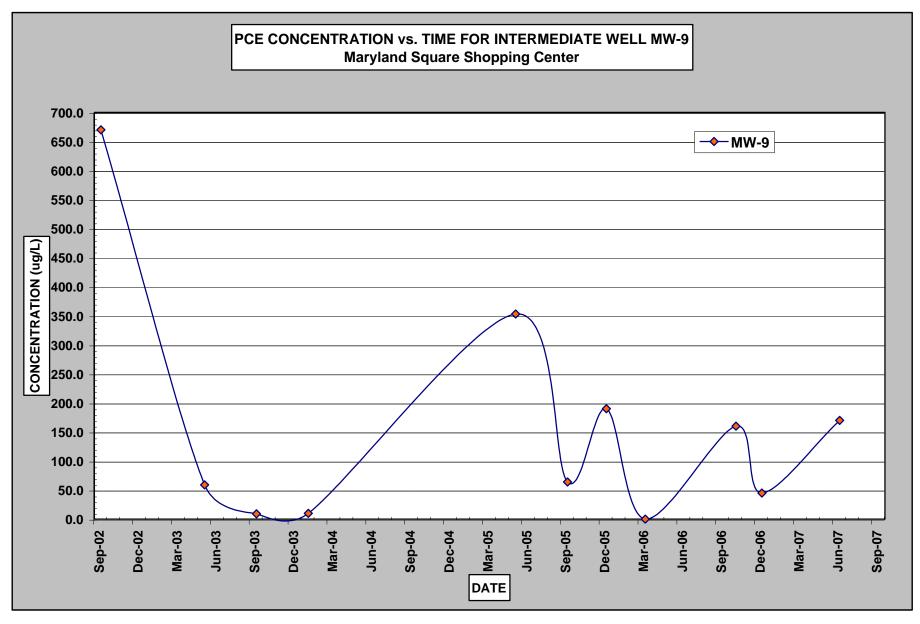
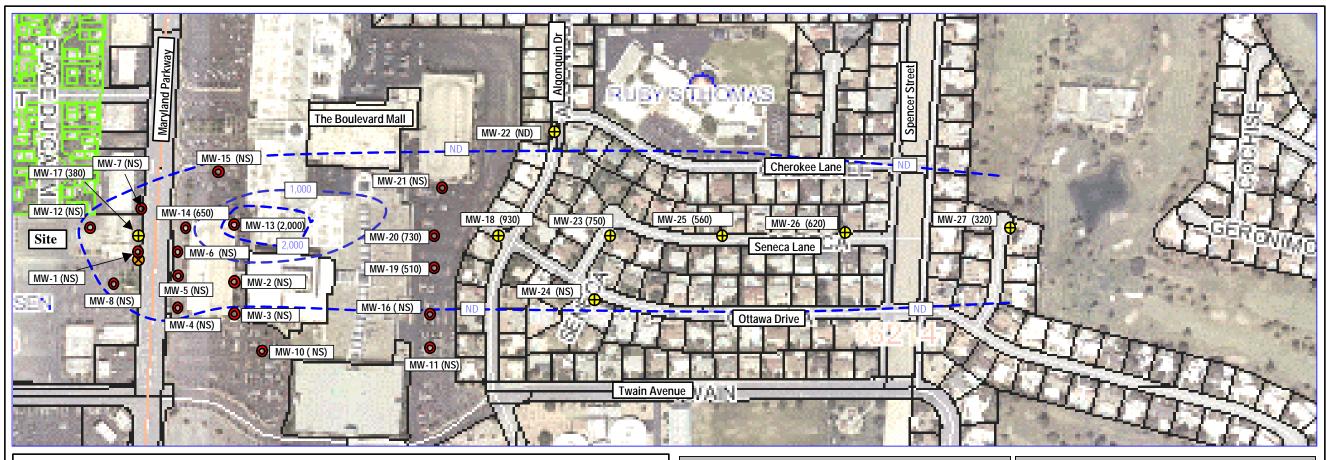
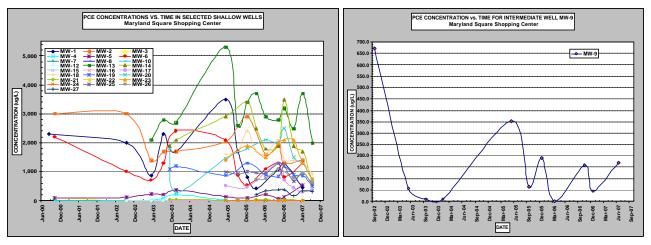

MS 3rd Qtr 07 Fig 3.ppt

FIGURE 3


FIGURE 4A

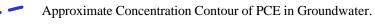

FIGURE 4B

URS Corporation Job No. 26698724 Figure 4B Chart 1 Al Phillips the Cleaner Maryland Square Shopping Center 3661 South Maryland Parkway Las Vegas, NV

<u>Well</u>	Concentration	<u>Well</u>	Concentration	<u>Well</u>	Concentration
MW-1	NS	MW-12	NS	MW-22	NS
MW-2	NS	MW-13	2,000	MW-23	750
MW-3	NS	MW-14	650	MW-24	NS
MW-4	NS	MW-15	NS	MW-25	560
MW-5	NS	MW-16	NS	MW-26	620
MW-6	NS	MW-17	380	MW-27	320
MW-7	NS	MW-18	930	Intermed	iate Well
MW-8	NS	MW-19	510	<u>Well</u>	Concentration
MW-10	NS	MW-20	730	MW-9	NS
MW-11	NS	MW-21	NS		

Source: Clark County Assessors Web Site Scale: 0 Feet 200 Feet

URS


- Approximate Location of Shallow Monitoring Well Installed by URS. \oplus
- Approximate Location of Intermediate Monitoring Well Installed by URS. 8
- Approximate Location of Monitoring Well Installed by Converse.
- Concentration of PCE Detected in Groundwater Form Monitoring Well (in ug/L). NS = Not Sampled. ND = Non-Detect.

SHALLOW MONITORING WELL PCE CONCENTRATIONS AND CONTOURS

3rd Quarter 2007 Al Phillips The Cleaner **Quarterly Groundwater Sampling** Maryland Square Shopping Center

3661 South Maryland Parkway Las Vegas, Nevada

3rd Quarter 2007 Job No. 26698724

MS 3rd Qtr 07 Fig 5.ppt

FIGURE 5

APPENDIX A Groundwater Sample Collection Logs

Page ____of__O

GROUNDWATER SAMPLE COLLECTION LOG

T. I. M I	e: AL PHILLIP 26698724 ected By: Collected:				$\omega)$	Sample Numb Screen Depth: Depth to Well		0 22 f	Ł
J.	EQUIPMENT			1447 HV	U				
Purging Metl Sampling Eq	nod/Equipment uipment:	:i	LF /	T					
II.	PURGING IN	FORMATIO	N						
Depth to Wa Pump Rate _	ter (Static) 1215	17,91 (Lite	(feet) ers/minute)	Depth to Wat	er (Pumping) _ mp Placement _	16.03	(feet))	
Time (min)	Pumping Rates (L/min)	Water Level (ft)	pH (s.u)	Conduc- tance (mS/cm)	Turbidity (ntu)	DO (mg/L)	T (°C)	TDS (g/L)	ORP (mV)
0	.7.75	18:G	6.41 6.69 6. 72	3.52 3.44 3.43	56.8 10.8 0.0	6.31 5.01 4.92	28.09 26.04 26.67	2.2 2.2 2.2	228 208 201
15/5 UB/0	,,	18,32	6.73 6.74	3.44	0.0 a.0 o.0	4.95 4.95	26.65 26.66 26.66	2.2	201 199 148
10 2 X	11	18.12	6.7.4	3.44 3.44 3.44	0.00	4.96 4.95 4.95	26.68 26.69 26.72	2.2 2.2 2.2	198 198 197
gs 35	h	18.03	6.74	3.44	0.0	4.95	26.74		197
	osition of water e Purged:(SAMPLE PAC	6.875 L	**			: Clean_ged Dry (Y/N)_			1
(Container Typ	e & Volume		Filter (Y/N)	Preser	vatives		Parameters	
	3 x 40m	I VOA		N	H	ICI	V	OCs (8260B)	

Comments: Water evel dropped | pump a tochigh a speed. Stabilized, Soft bo Hom Notes: LF = Low flow purging method sampling equipment. T = Tsunami pump. G = Grundfos pump. DB = Dedicated bailer sampling equipment.

3W = 3 well volume purging method. 3 well volume purging method = length of static water column * well casing volume (gal-ft: 2" = 0.16, 4" = 0.65) * 3

GROUNDWATER SAMPLE COLLECTION LOG

	e: AL PHILLIF : 26698724 ected By: e Collected:					Sample Numb Screen Depth: Depth to Well		5.3 fx	· ·
	EQUIPMENT		•						
Purging Met Sampling Eq	hod/Equipment juipment:	i:	LF / LF/	T T					
II.	PURGING IN	FORMATIO	<u>N</u>						
Depth to Wa	iter (Static)	17.85 (Lite	(feet) ers/minute)	Depth to Wat	er (Pumping) _ mp Placement _	17.0	(feet) (fee	t)	
Time (min)	Pumping Rates (L/min)	Water Level (ft)	pH (s.u)	Conduc- tance (mS/cm)	Turbidity (ntu)	DO (mg/L)	T (°C)	TDS (g/L)	ORP (mV)
0.	:400	17.95	l .	3,00	54.0	7.91	23.44	2.1	209
		 	6.84	3.38	635	4.55	2324	2.2	206
ユ 4		-V	6.81	3.37 3.36	45.2	3.76	2358	22	205
- - - -		17.94	6.79 6.78	3.37	198	3.64	24.03	2.2	204
8		 ' ' 	6.77	3.40	208	3.54	24.50		200
10		17,93	677	3.41	18.4	3.52	24.38	22	200
12			6.77	342	18.00	3.49	24.31	2.2	200
			6.76	3,42	17.6	3.47	24.25	7.2	199
13			6.76	342	15.7	3.45	74.25	7-7	199
			6.16	3.41	18.1	3.42	24.24	2.2	198
118	<u> </u>	17.92	60.76	3.41	22.3	3.40	24.23	2.2	198
				· · · · · · · · · · · · · · · · · · ·					-
-	osition of water ne Purged:	7.22			end of purging	ed Dry (Y/N)	Ŋ		
	Container Typ	oe & Volume		Filter (Y/N)	Preser	vatives		Parameters	
					Y				

Container Type & Volume	Filter (Y/N)	Preservatives	Parameters
3 x 40ml VOA	N	HCl	VOCs (8260B)

Comments:	Softhatton
	DD - D. E 11 1

Notes: LF = Low flow purging method sampling equipment. T = Tsunami pump. G = Grundfos pump. DB = Dedicated bailer sampling equipment.

3W = 3 well volume purging method. 3 well volume purging method = length of static water column * well casing volume (gal·ft: 2" = 0.16. 4" = 0.65) * 3

Page 3 of

GROUNDWATER SAMPLE COLLECTION LOG

Joh Number	e: AL PHILLIP 26698724 ected By: Collected:					Sample Numb Screen Depth: Depth to Well		1.33 A	_
I.	EQUIPMENT								
Purging Metl Sampling Eq	hod/Equipment uipment:	:	<u> </u>	F/T -F/T					
II.	PURGING IN	FORMATIO	N						
Depth to Wa	ter (Static)	26. 41 (Lite			er (Pumping) _ mp Placement _		(feet)	t)	
an:	Pumping	Water		Conduc-	TL:324	DO	Т	TDS	ORP
Time (min)	Rates (L/min)	Level (ft)	pH (s.u)	tance (mS/cm)	Turbidity (ntu)	(mg/L)	(°C)	(g/L)	(mV)
O	1500	26.88		3.26	-5.0	8.12	75.88	7.2	202
3	,400	- 110	6.86	3.45	5270	\$.14	24.91	2,2	203
4	1		6.84	3.45	495.0	6.09	25.11	22	253
\$ 5	4		6.83	3.44	714.0	5.69	25.34	22	203
4-6	1400	26.71	683	346	7330	5.30	24.68	22	203
7			6.82	3.46	-5.0	5.41	24.79	2.2	703
3 <u>KO</u>	1300		6.82	3.47	¥9980	5.23	25.23	z.2	203
1 9	<u> </u>		6.83	3.43	677.0	5.11	25.91	72	703
10			6.83	3,38	627.0	6.74	76.08	2.2	202
3-11	¥		6.83	3.40	5890	5.40	26.75	7.2	202
12	:250	- 1 - 0	6.83	3.41	511:0	5.26	26.55	22	202
15	ļi	26.59	683	3.42	4720	5.23	26.80	22	7.02
12 17			6.83	3.42	443.0	5.18	27.01	2.2	202
15 18		6.0/-	6.83	341	3860	5.13	27.28	72.	207_
19	<u> </u>	76.49	6.84	3.40	3520	5.09	27.36	7.2	201
/									
	osition of water e Purged: SAMPLE PAC	.2L		Caroline: At	end of purging:	_ <u>51 (100</u> d ed Dry (Y/N)_	42		
(Container Typ	oe & Volume		Filter (Y/N)	Preser	vatives		Parameters	
	3 x 40m	l VOA		N	Н	C1	V	OCs (8260B)	
Comments:	tur b.	dim T	Start Pump SI	owlenex	Use con	ntrol befo	re Flowce	II/turn	ralve off
	w flow purging me ume purging meth	ethod satahpling o	equipment. I =	I sunamı pump.	G = Grundfos pum	p. DB = Dedicate	d bailer sampling e	quiment.	

URS Corportation

811 Grier Drive Las Vegas, NV 89119

Page ____of__O

GROUNDWATER SAMPLE COLLECTION LOG

	Job Number: Sample Colle	e: AL PHILLIP 26698724 ected By:	وماسالك	(vary)		Sample Number: $\frac{MW - 26}{Screen Depth: 10 - 35 \text{ ft}}$ Depth to Well Bottom: $\frac{10 - 35 \text{ ft}}{25 - 100}$				
	I.	EQUIPMENT								
	Purging Meth Sampling Eq	nod/Equipment uipment:	:	LF/	4					
	II.	PURGING IN	FORMATIO]	<u>N</u>						
	Depth to Wate _	ter (Static)	(Lite	(feet) ers/minute)	Pui	er (Pumping) _ mp Placement _	18.14 26.5	(feet)	1)	
	Time (min)	Pumping Rates (L/min)	Water Level (ft)	pH (s.u)	Conduc- tance (mS/cm)	Turbidity (ntu)	DO (mg/L)	T (°C)	TDS (g/L)	ORP (mV)
İ		.400	18.17	6.90	3.55	26.9	4.56	25.03	2.3	175
a	1	ts		6.79	3,55	6.4	382	25.62	2.3	177
8	/ 3	, 350		6.77	3.54	5.9	3.73	25.94	2,3	177
	5 5	1		6.76	3.54	5.6	3.69	26.13	$\widehat{2}$.3	177
	ショ			6.76	3.54	5.7	367	26.21	a.3	177
23	5 9			6.75	3.54	5.3	3.64	26.37	23	177
7	0/10			6,75	3.54	5.2	3.62	26.49	2.3	177
2	2 12	.300		6.75	3.55	4.9	3 58	26.55	a.3	177
Ň	8 14		13.15	6.14	3.57	4.4	3.50	26.81	2.3	176
5	16			6.74	3.57	4.3	3.51	26.84	2.3	176
5	1 11			6.74	3.57	4.3	3.50	26.92	2.3	1760
G	18			6.74	3.57	4.4	3.50	27.02		176
6	5 19	<u> </u>	18,14	6.74	3.56	4.5	3.48	27.08	2.3	176
I		<u> </u>	<u> </u>		L	ł	<u> </u>			l
	Color/compo Total Volum III.	osition of water te Purged:		art: <u>Je</u> Total Purge	At Time: 9	end of purging	: Clear ged Dry (Y/N)	7		

Container Type & Volume	Filter (Y/N)	Preservatives	Parameters
3 x 40ml VOA	N	НСІ	VOCs (8260B)

Comments:	FIRM bottom
Notes: LF = Low flo	ourging method sampling equipment. T = Tsunami pump. G = Grundfos pump. DB = Dedicated bailer sampling equiment.
3W = 3 well volume	rging method. 3 well volume purging method = length of static water column * well casing volume (gal ft: 2" = 0.16, 4" = 0.65)

Sample Number: MW - 25

GROUNDWATER SAMPLE COLLECTION LOG

Aumber: 26698724 Apple Collected By: Pate & Time Collected: Aumber: 26698724 Apple Collected: App						Sample Number Screen Depth: <u>\$</u> Depth to Well I	r: <u>MW - 23</u> 5 - 25 ft	16.02	XX
I.	EQUIPMENT								
Purging Meth Sampling Equ	nod/Equipment: uipment:		j-F L	F/T					
II.	PURGING INI	FORMATION	1						
Depth to Water (Static) 19.96 (feet) Depth to Water (Pumping Pump Rate (Liters/minute) Pump Placement						22	(feet) (feet))	
	•								
Time	Pumping Rates (L/min)	Water Level (ft)	pH (s.u)	Conduc- tance (mS/cm)	Turbidity (ntu)	DO (mg/L)	T (°C)	TDS (g/L)	ORP (mV)
Time (min)	Rates (L/min)	ŀ	pH (s.u)	tance	-	l i	(°C) 26.60	(g/L)	(mV)
Time	Rates	Level	(s.u)	tance (mS/cm)	(ntu) 40.8 27.1	(mg/L) 6.19 3. 97	(°C) 26.60 25.40	(g/L) 2.7	(mV) 214 209
Time (min)	Rates (L/min)	Level (ft)	(s.u)	tance (mS/cm)	(ntu) 40.8 27.1 27.6	(mg/L) 6.19 3.97	(°C) 26.60 25.40 25.45	(g/L) 2.1 2.2 2.2	(mV) 214 209 207
Time (min)	Rates (L/min)	Level (ft) /9,96	(s.u) 6.78 6.72 6.72 6.72	tance (mS/cm) 3.18 3.50 3.50	(ntu) 40.8 27.1 27.6 26.3	(mg/L) 6.19 3.97 3.90 3.74	(°C) 26.60 25.40 25.45 25.52	(g/L) 2.1 2.2 2.2 2.2	(mV) 214 209 207 203
Time (min)	Rates (L/min) , らづ	Level (ft)	(s.u) 6.78 6.72 6.72 6.72	tance (mS/cm) 3.18 3.50 3.50 3.50 3.50	(ntu) 40.8 27.1 27.6 26.3 21.6	(mg/L) 6.19 3.97 3.90 3.79 3.70	(°C) 26.60 25.40 25.45 25.52 25.70	(g/L) 2.7 2.2 2.2 2.2 2.2	(mV) 214 209 207
Time (min)	Rates (L/min)	Level (ft) /9,96	(s.u) 6.98 6.72 6.72 6.72 6.72 6.72	tance (mS/cm) 3.18 3.50 3.50 3.51 3.50 3.50	(ntu) 40.8 27.1 27.6 26.3 21.6 18.4	(mg/L) 6.19 3.97 3.90 3.79 3.70 3.66	(°C) 26.60 25.40 25.45 25.52 25.70 26.14	(g/L) 2.1 2.2 2.2 2.2	(mV) 214 209 207 203 201
Time (min)	Rates (L/min)	Level (ft) /9,96	(s.u) 6.78 6.72 6.72 6.72 6.72 6.72	tance (mS/cm) 3.18 3.50 3.50 3.51 3.50 3.50	(ntu) 40.8 27.1 27.6 26.3 21.6	(mg/L) 6.19 3.97 3.90 3.79 3.70	(°C) 26.60 25.40 25.45 25.52 25.70	(g/L) 2.1 2.2 2.2 2.2 2.2 2.3	(mV) 214 209 207 203 201 199

Color/composition of water at purging start:	At end of purging:
6-6 L 17HJ	

SAMPLE PACKAGING 111.

7	HCl	VOCs (8260B)
	1101	VOCs (6200D)
1	HNO ₃	Iron and Manganese (6020)
1	none	Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ (300)/Alkalinity (310)
7	H ₃ PO ₄	TOC (415.1)
_	1	N none

Comments:	
N. L. L. Ley flow purging method, sampling equipment. T = Tsunami pump. G = Grundfos pump. DB = Dedicated bailer sampling	g equiment.
Notes: LF – Low now purging method. 3 well volume purging method = length of static water column * well casing volume (gal/ft: 2" = 0. 3W = 3 well volume purging method. 3 well volume purging method = length of static water column * well casing volume (gal/ft: 2" = 0.	.16, 4" = 0.65) * 3
3W = 3 well volume purging method. 3 well volume purging method – length of static water column	hana: (702) 40'

Phone: (702) 492-7900 (702) 492-9149 Fax:

Page of O

GROUNDWATER SAMPLE COLLECTION LOG

Project Name: AL PHILLIPS - MARYLAND SQUARE Job Number: 26698724 Sample Collected By: Date & Time Collected: 9-19-07 1027 Sample Number: MW - 23 Screen Depth: 5-25 ft Depth to Well Bottom: 35,32 ft							G.		
1.	I. EQUIPMENT								
Purging Metl Sampling Eq	eQUIPMENT nod/Equipment uipment:	:	T/LF						
	PURGING IN								
Depth to Wa Pump Rate _	ter (Static)	16.61 (Lite	(feet) ers/minute)	Depth to Wat	er (Pumping) _ mp Placement _	16.61 20	(feet)	t)	
	Pumping	Water		Conduc-			_		
Time (min)	Rates (L/min)	Level (ft)	pH (s.u)	tance (mS/cm)	Turbidity (ntu)	DO (mg/L)	T (°C)	TDS (g/L)	ORP (mV)
Ò	, 500	16:66			15.4	4,74	24,53		216
1	,400	7 77 12 0	6.82	3,30	4.8	4,02	25.12	2.1	212
5 2	150	16.66	G 82	3.30	5.2	4.10	25.14	٦,١	211
53	,400		6.82	331	3.4	3.94	25.43	2.1	209
\$ 5		16.61	6.82	3,31	3,3	3,99	25.42	2.1	209
35 6		•	6.81	3.31	3,3	3,97	25.40	2.1	208
6 B			6.81	3,31	2.7	3.92	25.41	2.1	208
10	1400		6.81	3.31	2.5	3.86	25.52	2.1	207
15 11			681	3.31	S 0	3.87	25.62	2.1	207
5 12			6.81	3.31	1.9	3.84	25.66	2.1	200
1513			6.81	3.31	2.5	3.82	25.69	2.1	205
5 16	.400	16.61	681	3,31	1.8	3.80	25.75	211	205
	1		6.81	3.31	1.4	3.79	25.80	2.1	204
<u>K 17</u>	<u> </u>	16.6	6.81	3.31	1,4	3.78	25.84	2.1	204
Total Volum	Color/composition of water at purging start: Clear At end of purging: Lear Total Volume Purged: Total PurgeTime: SMIC Purged Dry (Y/N) N 7.05 THE PACKAGING III. SAMPLE PACKAGING								

Container Type & Volume	Filter (Y/N)	Preservatives	Parameters
3 x 40ml VOA	N	НСІ	VOCs (8260B)

Comments:	Able to adj	. Now/control v	with adjuster b	efore cell.	FIRM bottom.
			ni pump. $G = Grundfos pump.$		
3W = 3 well volume p	urging method. 3 wel	I volume purging method = le	ngth of static water column * v	vell casing volume (ga	1 ft: $2'' = 0.16$, $4'' = 0.65$) * 3

Page ______ of__ / O

29.04

29.00

29.06

29.17

29.25

29.27

29.27

29.28

29.30

29.11

2.1

2.1

0.

2.

2.1

2.1

0.1

2-1

216

212

211

210

210

GROUNDWATER SAMPLE COLLECTION LOG

Project Name: AL PHILLIPS - MARYLAND SQUARE Job Number: 26698724 Sample Collected By: Date & Time Collected: 9/19/07 30				038 f	坐 .				
		r t		, ,					
I.	EQUIPMENT								
Purging Met Sampling Eq	hod/Equipment uipment:	;	LF/	T T					
II.	PURGING IN								
Depth to Wa	ter (Static)	2,4 (Lite	(feet) ers/minute)	Depth to Wat	er (Pumping) _ mp Placement _	12.1	(feet)	t)	
Time	Pumping Rates	Water Level	pН	Conduc- tance	Turbidity	DO	Т	TDS	ORP
(min)	(L/min)	(ft)	(s.u)	(mS/cm)	(ntu)	(mg/L)	(°C)	(g/L)	(mV)
ن	.400	12.49	7.26	1.86	42.1	7.75	30,59	1,8	728
			4.88	3,27	19,2	7.69	29,23	2.1	555
2			6.85	3.28	188	7-11	29.19	2.1	220
3			6.83	3.28	17.6	6.54	29.15	2.1	219
Ĺf	\(\cdot \)		6.82	3,29	18.3	6.27	29.04	2.1	216

18.9

19.9

22.2

22

22

22.0

21.8

6.17

5.96

5.82

5.79

5.70

5,60

5,53

5.50

5,47

5.43

Color/composition of water at purging start:	: Clear	At end of purging: Clear
Total Volume Purged: 64 To	otal PurgeTime:	6 min, Purged Dry (Y/N)

3, 29

3.29

327

<u>3.28</u>

28

6.82

6.81

6.81

6.81

6.81

6.81

681

6.81

6.81

5.81

III. SAMPLE PACKAGING

14

400

12.45

12,45

Container Type & Volume	Filter (Y/N)	Preservatives	Parameters
3 x 40ml VOA	N	HC1	VOCs (8260B)
1 x 250ml Clear Plastic	N	HNO_3	Iron and Manganese (6020)
1 x 500ml Clear Plastic	N	none	CI, NO ₃ , SO ₄ ² (300)/Alkalinity (310)
1 x 250ml Amber Glass	N	H ₃ PO ₄	TOC (415.1)

Comments:		Fire	ntoltan
1 x 250ml Amber Glass	N	H ₃ PO ₄	TOC (415.1)
1 x 500ml Clear Plastic	N	none	Cl, NO ₃ , SO ₄ ² (300)/Alkalinity (310)
1 x 250ml Clear Plastic	N	HNO ₃	Iron and Manganese (6020)

Notes: LF = Low flow purging method sampling equipment. T = Tsunami pump. G = Grundfos pump. DB = Dedicated bailer sampling equipment. 3W = 3 well volume purging method. 3 well volume purging method = length of static water column * well casing volume (gal ft: 2" = 0.16, 4" = 0.65) * 3

GROUNDWATER SAMPLE COLLECTION LOG

	Project Name: AL PHILLIPS - MARYLAND SQUARE Job Number: 26698724 Sample Collected By: John Wood Date & Time Collected: 9-19-19-19-19-19-19-19-19-19-19-19-19-19						Sample Number: MW - 20 Screen Depth: 19 - 35 ft Depth to Well Bottom: 32,9/f4				
I.	EQUIPMENT	•									
Purging Met Sampling Ec	hod/Equipmen quipment:	::	LF	17							
II.	PURGING IN	FORMATIO	N								
Depth to Wa			(feet) ers/minute)		ter (Pumping) _ mp Placement _	26.2 30	(feet) (feet				
Time	Pumping Rates	Water Level	рH	Conduc- tance	Turbidity	DO	Т	TDS	ODD		
(min)	(L/min)	(ft)	(s.u)	(mS/cm)	(ntu)	(mg/L)	(°C)	l	ORP		
\circ					(,	(- 8,)	()	[(g/L)	(mV)		
	1400	126.30	6.85	3.20	-5.0	7.27		(g/L)	(mV)		
l	1400	10.630	6.82				28.00	(g/L) 2.1 2.1	235		
1 2	1400	126.30	6.82	3.20 3.23 3.26	-5.0	7.27		D. 1 Q. 1	235 230		
b 3	1400	126.30		3,23	-5.0 -5.0	7.27 5.89	28.35 28.91	2.1 2.1 2.1	235 230 229		
		26,24	6.82 6.82 6.81	3.23	-5.0 -5.0 -5.0	7.27 5.89 5.25	28.35	A. 1 (3. 1 (3. 1	235 230 229 227		
) 3 6 4	1400		6.82 6.82 6.81	3.23 3.26 3.23 3.23 3.23	-5.0 -5.0 -5.0	7.27 5.89 5.25 4.91	28.00 28.35 28.91 29.70 29.61	2.1 2.1 2.1 2.1	235 230 229 727 225		
) 3 6 4	1400		6.82 6.82 6.81 6.82	3.23 3.26 3.23 3.23	-5.0 -5.0 -5.0 -5.0	7.27 5.89 5.25 4.91 4.79	28.00 28.35 28.91 29.70	2.1 2.1 2.1	235 230 229 227		

4.55

4.50

4.40

43

442

4.51

4.45

54

3 2,05

32.48

2.

a.

2.1

Ž-

Color/composition of water at purging start:	Sl. Cloudy At end of p	ourging: Class	-	_
Total Volume Purged: 7.3 L Total	PurgeTime: / MAIN	Purged Dry (Y/N))		_

3.28

327

3.

26

2.6

26

26

III. SAMPLE PACKAGING

30<u>0</u>

300

300

B

20

26.24

à6.24

6.82

6.83

6.83

6.83

6.83

6.83

Container Type & Volume	Filter (Y/N)	Preservatives	Parameters
3 x 40ml VOA	N	НСІ	VOCs (8260B)

231-0

269.0

248.0

		15-11	_	F - 4 1.
Comments:	* Place	pump higher,	pumpslaver.	+15 mboHom
AL TELE				

Notes: LF = Low flow purging method sampling equipment. T = Tsunami pump. G = Grundfos pump. DB = Dedicated bailer sampling equipment.

GROUNDWATER SAMPLE COLLECTION LOG

	Job Number Sample Coll	e: AL PHILLIP : 26698724 ected By: e Collected:		AND SQUA	•		Sample Numb Screen Depth: Depth to Well	15 - 40 ft	30,43}	<u> </u>
	I.	EQUIPMENT								
		hod/Equipment quipment:		. 4	FIT					
	II.	PURGING IN	FORMATIO:	N						
	Depth to Wa	nter (Static)	17,40 (Lite	(feet) ers/minute)	Depth to Wat	er (Pumping) _ mp Placement _	17,40	(feet) (fee	1)	
	Time (min)	Pumping Rates (L/min)	Water Level (ft)	pH (s.u)	Conduc- tance (mS/cm)	Turbidity (ntu)	DO (mg/L)	T (°C)	TDS (g/L)	ORP (mV)
	0	.300	17:58	7.05	2.93	238.O	7.90	29.51	2.0	244
ال	1			G.79	3,30	216.0	6.27	29.67	2,1	242
`	2	1400	17.46	6.75	3,44	211.0	4.51	30.20	2.2	236
•	3			6.76	3,45	214.0	4.36	30.20	2.2	235
13	4			6.75	3.45	189.0	4.33	30-23	2.2	234,
9.	9	1400		6.76	3.46	166.0	4-25	30,29	2.2	233
	7		17,40	6.76	3.46	148.0	4,22	30.46	2.2	230
3	13			6,75	3.39	154.0	3.96	38.35	2.2	228
34	1 9	1300		6.76	3.43	130.0	3.99	32.58	2.2	227
U	10	1		6.76	3.47	117.0	4.15	32.41	2.2	225
U.	0 12			6.76	3.48	106.0	4.17	32.43	2.2	224
y	9 13			6.76	3.48	102.0	4.15	3243	2.2	224
5	2 14			6.77	3.48	94.7	4.12	32.41	2.2	223
351 A 1	1 18	 		6.77	3.49	13.5	4.13	3236 32.21	2.2	227
6.	1 19	 	12.40	6.77	3.49	103.0	4.15	32119	2.0	228
ઇ ઇ	Color/comp	osition of water ne Purged:C	672	art: Je	•	end of purging			1 <i>6</i> - · •	,

Container Type & Volume	Filter (Y/N)	Preservatives	Parameters
3 x 40ml VOA	N	HCl	VOCs (8260B)

Comments:	:5-11 E	sumphigher.	Start Slowe	· · · · · · · · · · · · · · · · · · ·
Notes: LF = Low flow purging me	thod sampling	g equipment. T = Tsunami pu	mp. G = Grundfos pump.	DB = Dedicated bailer sampling equiment.
3W = 3 well volume purging meth	od. 3 well volu	ume purging method = length	of static water column * w	vell casing volume (gal ft: 2" = 0.16, 4" = 0.65) * 3

URS Corportation

811 Grier Drive Las Vegas, NV 89119

Page Oof

GROUNDWATER SAMPLE COLLECTION LOG

1 roject ivaine	e: <u>AL PHILLIP</u>	<u>'S - MARYL</u>	<u>AND SQUA</u>	RE	Sample Number: <u>MW - 13</u>				
Job Number:							9 - 29 ft	25	0)
Sample Colle	ected By:	Holly	voodha	Depth to Well	Bottom:	25,00	- F +		
Date & Time	: Collected: 🤟	119/07	1551						•
		((,						
I.	EQUIPMENT								
	hod/Equipment uipment:		L	FIT					
	PURGING IN		N				~		
Depth to Wa	ter (Static)	17.41	(feet)	Depth to Wat	er (Pumping) _	7.5 21	(feet)		
Pump Rate _	· 400	(Lite	ers/minute)	Pur	mp Placement _	21	(fee	t)	
	Pumping	Water		Conduc-		D.C.		TDC	ODD
Time	Rates	Level	рН	tance	Turbidity	DO	Т	TDS	ORP
Time (min)	ł	l i	pH (s.u)		Turbidity (ntu)	DO (mg/L)		TDS (g/L)	ORP (mV)
	Rates	Level	- 1	tance	1	1	Т		
(min)	Rates (L/min)	Level (ft)	(s.u) 6,97	tance (mS/cm)	(ntu)	(mg/L)	T (°C)	(g/L)	(mV)
(min)	Rates (L/min)	Level (ft)	(s.u) 6,97 6.76	tance (m\$/cm) 3, 25 3, 3/	(ntu) 237.0 120.0	(mg/L) 8,60 5,67	T (°C) 21.90 27.36	(g/L) 2.1 2.1	(mV) 241 237
(min)	Rates (L/min)	Level (ft)	(s.u) 6,97 6.76 6.75	tance (mS/cm) 3, 25 3, 31 3, 31	(ntu) 237.0 120.0 96.3	(mg/L) 8,60 5,67 5,41	T (°C) 27.90 27.36 27.41	(g/L) 2.1 2.1	(mV) 241 237 736
(min) (S 1 2 3	Rates (L/min)	Level (ft)	(s.u) 6,97 6.76 6.75 6.74	tance (mS/cm) 3. 25 3. 31 3. 31 3. 31	(ntu) 237.0 120.0 96.3 48.8	(mg/L) 8,60 5,67	T (°C) 21.90 27.36	(g/L) 2.1 2.1 2.1 2.1	(mV) 24/ 237 236 235
(min) (5) 1 2 5 4	Rates (L/min)	Level (ft)	(s.u) 6,97 6.76 6.75	tance (mS/cm) 3, 25 3, 31 3, 31 3, 31 3, 31	(ntu) 237.0 120.0 96.3 48.8 26.7	(mg/L) 8,60 5,67 5,41 5,23	T (°C) 27.90 27.36 27.41 27.47	(g/L) 2.1 2.1 2.1 2.1 2.1	(mV) 241 237 736
(min)	Rates (L/min)	Level (ft)	(s.u) 6,97 6.76 (c.75 6.74 6.73	tance (mS/cm) 3. 25 3. 31 3. 31 3. 31	(ntu) 237.0 120.0 96.3 48.8	(mg/L) 8.60 5.67 5.41 5.23 5.16	T (°C) 27.90 27.36 27.41 27.47 27.48	(g/L) 2.1 2.1 2.1 2.1	(mV) 241 231 236 235 234
(min) (5 1 2 5 4	Rates (L/min)	Level (ft)	(s.u) 6.97 6.76 6.75 6.74 6.73	tance (mS/cm) 3. 25 3. 31 3. 31 3. 31 3. 31	(ntu) 237.0 120.0 96.3 48.8 26.7 16.7	(mg/L) 8,60 5,67 5,41 5,23 5,16 5,10	T (°C) 27.90 27.36 27.41 27.47 27.48 27.56	(g/L) 2.1 2.1 2.1 2.1 2.1 3.1 3.1	(mV) 241 231 236 235 234 233

60

4.4

3.7

3.5

3.3

4.19

4.76

7.78

Phone: (702) 492-7900

Fax: (702) 492-9149

27.18

Color/composition of water at purging s	tart: Clear	At end of p	urging: Clear	
Total Volume Purged: 6.41	Total PurgeTime:	16 run	_ Purged Dry (Y/N)	N

31

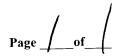
31

3.31

3.31

III. SAMPLE PACKAGING

400


.400

17.50

7-50

Container Type & Volume	Filter (Y/N)	Preservatives	Parameters
3 x 40ml VOA	N	HCl	VOCs (8260B)
1 x 250ml Clear Plastic	N	HNO ₃	Iron and Manganese (6020)
1 x 500ml Clear Plastic	N	none	CT, NO ₃ ⁻ , SO ₄ ²⁻ (300)/Alkalinity (310)
1 x 250ml Amber Glass	N	H ₃ PO ₄	TOC (415.1)

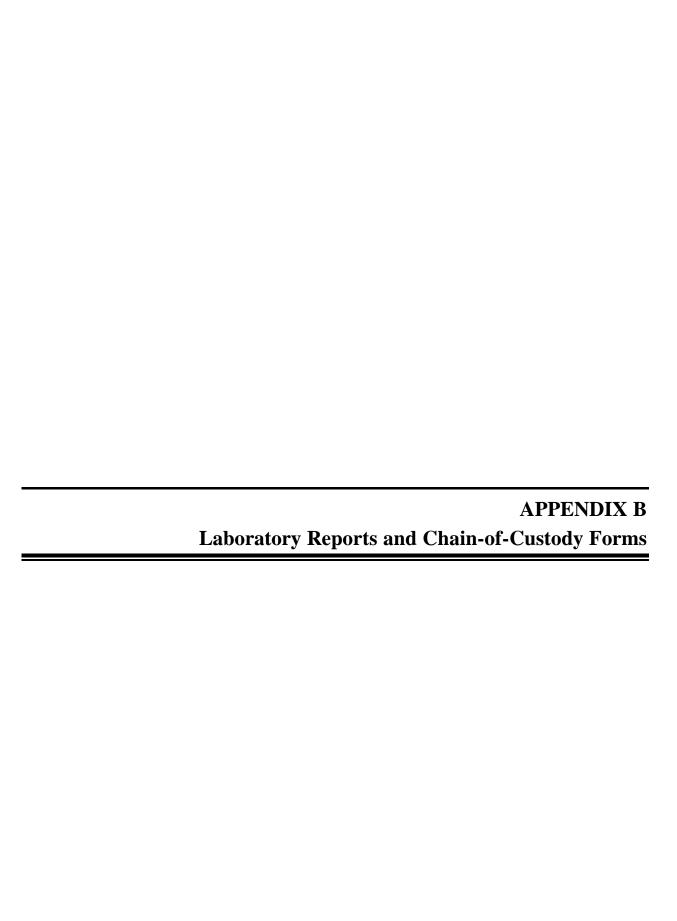
Comments:	Soft bollom
Notes: LF = Low flow purging method sampling equipment. T = Tsunami pump.	, ; • • • •
3W = 3 well volume purging method. 3 well volume purging method = length of st	tatic water column * well casing volume (gal ft: $2'' = 0.16$, $4'' = 0.65$) * 3

GROUNDWATER SAMPLE COLLECTION LOG DEPTH TO WATER LEVEL MEASUREMENTS

Project Name: AL PHILLIPS - MARYLAND SQUARE
Job Number: 26698724
Collected By: Wolchward

Date	Time	ا Well	Depth to	Depth to	
Collected	Collected	Number	Well Bottom	Water	Comments
9-17-01	1329	MMI	25.81	18.39	S
	1353	MW9	49.94	18.51	5
	1450	MWIZ	33.61	14.27	5
	1506	MWB	30.26	19.14	F time
	1512	MW7	30.04	16.31	5 15x12HW
7	1733	15WM	33.69	25.44	5 15,12 HW S 1722 HW
9-18-07	1650	MW24	20.42	14.24	¥
11	1659	MWZZ	35.04	26,90	F
1)	1714	MWIG	34.03	21.03	F
9-21-57	0952	MW10	30.41	20.38	5 Black orinsideofce
1	1007	MWZ	29,61	17.94	S
	1011	MW 3	29,59	18.99	5
	1016	14	19.12	18.96	5
	1029	5	29.11	17.85	5
	1037	6	29,44	19.00	5
	1046	15	28.04	14.80	5
V	1059	¥ 11	32.49	26.13	F /quadinesmell.
					J

Notes:


All measurements are in feet. S = Well with a soft or silty bottom.

F = Well with a firm bottom.

URS Corportation

811 Grier Drive Las Vegas, NV 89119 Phone: (702) 492-7900

Fax: (702) 492-9149

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Job#:

Las Vegas, NV 89119

26698724

Attn:

Holly Woodward

Fax:

Phone: (702) 492-7922 (702) 492-9149

Date Received: 09/20/07

Total Organic Carbon as NonPurgeable Organic Carbon

EPA Method SW9060/415.1/SM-5310C

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID: Lab ID:	APMS MW-25 URS07092020-05A	Total Organic Carbon	1.2	1.0 mg/L	09/18/07	09/25/07
Client ID: Lab ID:	APMS MW-18 URS07092020-07A	Total Organic Carbon	1.2	1.0 mg/L	09/19/07	09/25/07
Client ID: Lab ID:	APMS MW-13 URS07092020-10A	Total Organic Carbon	1.3	1.0 mg/L	09/19/07	09/25/07

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724 Attn: Holly Woodward

Phone: (702) 492-7922 Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-01A

Client I.D. Number: APMS MW-17

Sampled: 09/17/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	16 μg/L	26	1,3-Dichlorobenzene	ND	4.0 μg/L
2	Vinyl chloride	ND	4.0 μg/L	27	1,4-Dichlorobenzene	ND	4.0 μg/L
3	Chloroethane	ND	4.0 μg/L	28	1,2-Dichlorobenzene	ND	4.0 μg/L
4	Bromomethane	ND	16 μg/L	29	Surr: 1,2-Dichloroethane-d4	101	%REC
5	Trichlorofluoromethane	ND	4.0 μg/L	30	Surr: Toluene-d8	99	%REC
6	1,1-Dichloroethene	ND	4.0 μg/L	31	Surr: 4-Bromofluorobenzene	107	%REC
7	Dichloromethane	ND	16 μg/L				
8	trans-1,2-Dichloroethene	ND	4.0 μg/L				
9	1,1-Dichloroethane	ND	4.0 μg/L				
10	cis-1,2-Dichloroethene	ND	4.0 μg/L				
11	Chloroform	ND	4.0 μg/L				
12	1,2-Dichloroethane	ND	4.0 μg/L				
13	1,1,1-Trichloroethane	ND	4.0 μg/L				
14	Carbon tetrachloride	ND	4.0 μg/L				
15	1,2-Dichloropropane	ND	4.0 μg/L				
16	Trichloroethene	ND	4.0 μg/L				
17	Bromodichloromethane	ND	4.0 μg/L				
18	cis-1,3-Dichloropropene	ND	4.0 μg/L				
19	trans-1,3-Dichloropropene	ND	4.0 μg/L				
20	1,1,2-Trichloroethane	ND	4.0 μg/L				
21	Dibromochloromethane	ND	4.0 μg/L				
22	Tetrachloroethene	380	4.0 μg/L				
23	Chlorobenzene	ND	4.0 μg/L				
24	Bromoform	ND	4.0 μg/L				
25	1,1,2,2-Tetrachloroethane	ND	4.0 μg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Sadmer

Walter Hinkow

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

9/26/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724 Attn: Holly Woodward

Phone: (702) 492-7922 Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-02A

Client I.D. Number: APMS MW-27

Sampled: 09/17/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	16 μg/L	26	1,3-Dichlorobenzene	ND	4.0 μg/L
2	Vinyl chloride	ND	4.0 µg/L	27	1,4-Dichlorobenzene	ND	4.0 μg/L
3	Chloroethane	ND	4.0 µg/L	28	1,2-Dichlorobenzene	ND	4.0 μg/L
4	Bromomethane	ND	16 µg/L	29	Surr: 1,2-Dichloroethane-d4	102	%REC
5	Trichlorofluoromethane	ND	4.0 μg/L	30	Surr: Toluene-d8	99	%REC
6	1,1-Dichloroethene	ND	4.0 μg/L	31	Surr: 4-Bromofluorobenzene	105	%REC
7	Dichloromethane	ND	16 µg/L			,	
8	trans-1,2-Dichloroethene	ND	4.0 μg/L				
9	1,1-Dichloroethane	ND	4.0 μg/L				
10	cis-1,2-Dichloroethene	ND	4.0 μg/L				
11	Chloroform	ND	4.0 μg/L				
12	1,2-Dichloroethane	ND	4.0 μg/L				
13	1,1,1-Trichloroethane	ND	4.0 μg/L				
14	Carbon tetrachloride	ND	4.0 μg/L				
15	1,2-Dichloropropane	ND	4.0 μg/L				
16	Trichloroethene	ND	4.0 μg/L				
17	Bromodichloromethane	ND	4.0 μg/L				
18	cis-1,3-Dichloropropene	ND	4.0 μg/L				
19	trans-1,3-Dichloropropene	ND	4.0 μg/L				
20	1,1,2-Trichloroethane	ND	4.0 μg/L				
21	Dibromochloromethane	ND	4.0 μg/L				
22	Tetrachloroethene	320	4.0 μg/L				
23	Chlorobenzene	ND	4.0 μg/L				
24	Bromoform	ND	4.0 µg/L				
25	1,1,2,2-Tetrachloroethane	ND	4.0 μg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Saulun

Walter Hirkon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

9/26/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724 Attn: Holly Woodward

Phone: (702) 492-7922 Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-03A

Client I.D. Number: APMS MW-19

Sampled: 09/17/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	40 μg/L	26	1,3-Dichlorobenzene	ND	10 μg/L
2	Vinyl chloride	ND	10 μg/L	27	1,4-Dichlorobenzene	ND	10 μg/L
3	Chloroethane	ND	10 μg/L	28	1,2-Dichlorobenzene	ND	10 μg/L
4	Bromomethane	ND	40 μg/L	29	Surr: 1,2-Dichloroethane-d4	100	%REC
5	Trichlorofluoromethane	ND	10 μg/L	30	Surr: Toluene-d8	99	%REC
6	1,1-Dichloroethene	ND	10 μg/L	31	Surr: 4-Bromofluorobenzene	106	%REC
7	Dichloromethane	ND	40 μg/L			,	
8	trans-1,2-Dichloroethene	ND	10 μg/L				
9	1,1-Dichloroethane	ND	10 μg/L				
10	cis-1,2-Dichloroethene	ND	10 μg/L				
11	Chloroform	ND	10 μg/L				
12	1,2-Dichloroethane	ND	10 μg/L				
13	1,1,1-Trichloroethane	ND	10 μg/L				
14	Carbon tetrachloride	ND	10 μg/L				
15	1,2-Dichloropropane	ND	10 μg/L				
16	Trichloroethene	ND	10 μg/L				
17	Bromodichloromethane	ND	10 μg/L				
18	cis-1,3-Dichloropropene	ND	10 μg/L				
19	trans-1,3-Dichloropropene	ND	10 μg/L				
20	1,1,2-Trichloroethane	ND	10 μg/L				
21	Dibromochloromethane	ND	10 μg/L				
22	Tetrachloroethene	510	10 μg/L				
23	Chlorobenzene	ND	10 μg/L				
24	Bromoform	ND	10 μg/L				
25	1,1,2,2-Tetrachloroethane	ND	10 μg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Saulmir

Walter Hirihun

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

9/26/07 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724 Attn: Holly Woodward

Phone: (702) 492-7922 Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-04A

Client I.D. Number: APMS MW-26

Sampled: 09/18/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	40 μg/L	26	1,3-Dichlorobenzene	ND	10 μg/L
2	Vinyl chloride	ND	10 μg/L	27	1,4-Dichlorobenzene	ND	10 μg/L
3	Chloroethane	ND	10 μg/L	28	1,2-Dichlorobenzene	ND	10 μg/L
4	Bromomethane	ND	40 μg/L	29	Surr: 1,2-Dichloroethane-d4	103	%REC
5	Trichlorofluoromethane	ND	10 μg/L	30	Surr: Toluene-d8	99	%REC
6	1,1-Dichloroethene	ND	10 μg/L	31	Surr: 4-Bromofluorobenzene	106	%REC
7	Dichloromethane	ND	40 μg/L				
8	trans-1,2-Dichloroethene	ND	10 μg/L				
9	1,1-Dichloroethane	ND	10 μg/L				
10	cis-1,2-Dichloroethene	ND	10 μg/L				
11	Chloroform	ND	10 μg/L				
12	1,2-Dichloroethane	ND	10 μg/L				
13	1,1,1-Trichloroethane	ND	10 μg/L				
14	Carbon tetrachloride	ND	10 μg/L				
15	1,2-Dichloropropane	ND	10 μg/L				
16	Trichloroethene	ND	10 μg/L				
17	Bromodichloromethane	ND	10 μg/L				
18	cis-1,3-Dichloropropene	ND	10 μg/L				
19	trans-1,3-Dichloropropene	ND	10 μg/L				
20	1,1,2-Trichloroethane	ND	10 μg/L				
21	Dibromochloromethane	ND	10 μg/L				
22	Tetrachloroethene	620	10 μg/L				
23	Chlorobenzene	ND	10 μg/L				
24	Bromoform	ND	10 μg/L				
25	1,1,2,2-Tetrachloroethane	ND	10 μg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Son

Walter Hirihon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

9/26/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724

Holly Woodward Phone: (702) 492-7922

Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-05A

Client I.D. Number: APMS MW-25

Sampled: 09/18/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

2 Vinyl chloride ND 10 μg/L 27 1,4-Dichlorobenzene ND 10 3 Chloroethane ND 10 μg/L 28 1,2-Dichlorobenzene ND 10 4 Bromomethane ND 40 μg/L 29 Surr: 1,2-Dichloroethane-d4 102 5 Trichlorofluoromethane ND 10 μg/L 30 Surr: Toluene-d8 99 6 1,1-Dichloroethene ND 10 μg/L 31 Surr: 4-Bromofluorobenzene 107 7 Dichloromethane ND 40 μg/L	rting
2 Vinyl chloride ND 10 μg/L 27 1,4-Dichlorobenzene ND 10 3 Chloroethane ND 10 μg/L 28 1,2-Dichlorobenzene ND 10 4 Bromomethane ND 40 μg/L 29 Surr: 1,2-Dichloroethane-d4 102 5 Trichlorofluoromethane ND 10 μg/L 30 Surr: Toluene-d8 99 6 1,1-Dichloroethene ND 10 μg/L 31 Surr: 4-Bromofluorobenzene 107 7 Dichloromethane ND 40 μg/L	nit
3 Chloroethane ND 10 μg/L 28 1,2-Dichlorobenzene ND 10 4 Bromomethane ND 40 μg/L 29 Surr: 1,2-Dichloroethane-d4 102 5 Trichlorofluoromethane ND 10 μg/L 30 Surr: Toluene-d8 99 6 1,1-Dichloroethene ND 10 μg/L 31 Surr: 4-Bromofluorobenzene 107 7 Dichloromethane ND 40 μg/L	μg/L
4 Bromomethane ND 40 μg/L 29 Surr: 1,2-Dichloroethane-d4 102 5 Trichlorofluoromethane ND 10 μg/L 30 Surr: Toluene-d8 99 6 1,1-Dichloroethene ND 10 μg/L 31 Surr: 4-Bromofluorobenzene 107 7 Dichloromethane ND 40 μg/L	μg/L
5 Trichlorofluoromethane ND 10 μg/L 30 Surr: Toluene-d8 99 6 1,1-Dichloroethene ND 10 μg/L 31 Surr: 4-Bromofluorobenzene 107 7 Dichloromethane ND 40 μg/L	μg/L
6 1,1-Dichloroethene ND 10 μg/L 31 Surr: 4-Bromofluorobenzene 107 7 Dichloromethane ND 40 μg/L	%REC
7 Dichloromethane ND 40 µg/L	%REC
	%REC
O town 4.0 Pichlandh	
8 trans-1,2-Dichloroethene ND 10 μg/L	
9 1,1-Dichloroethane ND 10 μg/L	
10 cis-1,2-Dichloroethene ND 10 μg/L	
11 Chloroform ND 10 μg/L	
12 1,2-Dichloroethane ND 10 μg/L	
13 1,1,1-Trichloroethane ND 10 μg/L	
14 Carbon tetrachloride ND 10 μg/L	
15 1,2-Dichloropropane ND 10 μg/L	
16 Trichloroethene ND 10 μg/L	
17 Bromodichloromethane ND 10 μg/L	
18 cis-1,3-Dichloropropene ND 10 μg/L	
19 trans-1,3-Dichloropropene ND 10 μg/L	
20 1,1,2-Trichloroethane ND 10 μg/L	
21 Dibromochloromethane ND 10 μg/L	
22 Tetrachloroethene 560 10 μg/L	
23 Chlorobenzene ND 10 µg/L	
24 Bromoform ND 10 μg/L	
25 1,1,2,2-Tetrachloroethane ND 10 μg/L	

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

9/26/07 **Report Date**

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724 Attn: Holly Woodward

Phone: (702) 492-7922 Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-06A

Client I.D. Number: APMS MW-23

Sampled: 09/19/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	40 μg/L	26	1,3-Dichlorobenzene	ND	10 μg/L
2	Vinyl chloride	ND	10 μg/L	27	1,4-Dichlorobenzene	ND	10 μg/L
3	Chloroethane	ND	10 μg/L	28	1,2-Dichlorobenzene	ND	10 μg/L
4	Bromomethane	ND	40 μg/L	29	Surr: 1,2-Dichloroethane-d4	99	%REC
5	Trichlorofluoromethane	ND	10 μg/L	30	Surr: Toluene-d8	99	%REC
6	1,1-Dichloroethene	ND	10 μg/L	31	Surr: 4-Bromofluorobenzene	106	%REC
7	Dichloromethane	ND	40 μg/L				
8	trans-1,2-Dichloroethene	ND	10 μg/L				
9	1,1-Dichloroethane	ND	10 μg/L				
10	cis-1,2-Dichloroethene	ND	10 μg/L				
11	Chloroform	ND	10 μg/L				
12	1,2-Dichloroethane	ND	10 μg/L				
13	1,1,1-Trichloroethane	ND	10 μg/L				
14	Carbon tetrachloride	ND	10 μg/L				
15	1,2-Dichloropropane	ND	10 μg/L				
16	Trichloroethene	ND	10 μg/L				
17	Bromodichloromethane	ND	10 μg/L				
18	cis-1,3-Dichloropropene	ND	10 μg/L				
19	trans-1,3-Dichloropropene	ND	10 μg/L				
20	1,1,2-Trichloroethane	ND	10 μg/L				
21	Dibromochloromethane	ND	10 μg/L				
22	Tetrachloroethene	750	10 μg/L				
23	Chlorobenzene	ND	10 μg/L				
24	Bromoform	ND	10 μg/L				
25	1,1,2,2-Tetrachloroethane	ND	10 μg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Saulan

Walter Hinkow

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724 Attn: Holly Woodward

Phone: (702) 492-7922 Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-07A

Client I.D. Number: APMS MW-18

Sampled: 09/19/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	40 μg/L	26	1,3-Dichlorobenzene	ND	10 μg/L
2	Vinyl chloride	ND	10 μg/L	27	1,4-Dichlorobenzene	ND	10 μg/L
3	Chloroethane	ND	10 μg/L	28	1,2-Dichlorobenzene	ND	10 μg/L
4	Bromomethane	ND	40 μg/L	29	Surr: 1,2-Dichloroethane-d4	97	%REC
5	Trichlorofluoromethane	ND	10 μg/L	30	Surr: Toluene-d8	100	%REC
6	1,1-Dichloroethene	ND	10 μg/L	31	Surr: 4-Bromofluorobenzene	109	%REC
7	Dichloromethane	ND	40 μg/L				
8	trans-1,2-Dichloroethene	ND	10 μg/L				
9	1,1-Dichloroethane	ND	10 μg/L				
10	cis-1,2-Dichloroethene	ND	10 μg/L				
11	Chloroform	ND	10 μg/L				
12	1,2-Dichloroethane	ND	10 μg/L				
13	1,1,1-Trichloroethane	ND	10 μg/L				
14	Carbon tetrachloride	ND	10 μg/L				
15	1,2-Dichloropropane	ND	10 μg/L				
16	Trichloroethene	ND	10 μg/L				
17	Bromodichloromethane	ND	10 μg/L				
18	cis-1,3-Dichloropropene	ND	10 μg/L				
19	trans-1,3-Dichloropropene	ND	10 μg/L				
20	1,1,2-Trichloroethane	ND	10 μg/L				
21	Dibromochloromethane	ND	10 μg/L				
22	Tetrachloroethene	930	10 μg/L				
23	Chlorobenzene	ND	10 μg/L				
24	Bromoform	ND	10 μg/L				
25	1,1,2,2-Tetrachloroethane	ND	10 μg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Soulan

Walter Hinkow

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

 $Alpha\ Analytical,\ Inc.\ currently\ holds\ appropriate\ and\ available\ NDEP\ certifications\ for\ the\ data\ reported\ -\ certification\ \#NV16.$

9/26/07 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724 Attn: Holly Woodward

Phone: (702) 492-7922 Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-08A

Client I.D. Number: APMS MW-20

Sampled: 09/19/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	20 μg/L	26	1,3-Dichlorobenzene	ND	5.0 μg/L
2	Vinyl chloride	ND	5.0 μg/L	27	1,4-Dichlorobenzene	ND	5.0 μg/L
3	Chloroethane	ND	5.0 μg/L	28	1,2-Dichlorobenzene	ND	5.0 μg/L
4	Bromomethane	ND	20 μg/L	29	Surr: 1,2-Dichloroethane-d4	103	%REC
5	Trichlorofluoromethane	ND	5.0 μg/L	30	Surr: Toluene-d8	98	%REC
6	1,1-Dichloroethene	ND	5.0 μg/L	31	Surr: 4-Bromofluorobenzene	108	%REC
7	Dichloromethane	ND	20 μg/L			,	
8	trans-1,2-Dichloroethene	ND	5.0 μg/L				
9	1,1-Dichloroethane	ND	5.0 μg/L				
10	cis-1,2-Dichloroethene	ND	5.0 μg/L				
11	Chloroform	ND	5.0 μg/L				
12	1,2-Dichloroethane	ND	5.0 μg/L				
13	1,1,1-Trichloroethane	ND	5.0 μg/L				
14	Carbon tetrachloride	ND	5.0 μg/L				
15	1,2-Dichloropropane	ND	5.0 μg/L				
16	Trichloroethene	ND	5.0 μg/L				
17	Bromodichloromethane	ND	5.0 μg/L				
18	cis-1,3-Dichloropropene	ND	5.0 μg/L				
19	trans-1,3-Dichloropropene	ND	5.0 μg/L				
20	1,1,2-Trichloroethane	ND	5.0 μg/L				
21	Dibromochloromethane	ND	5.0 μg/L				
22	Tetrachloroethene	730	5.0 μg/L				
23	Chlorobenzene	ND	5.0 μg/L				
24	Bromoform	ND	5.0 μg/L				
25	1,1,2,2-Tetrachloroethane	ND	5.0 μg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Soulur

Walter Hinkows

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

9/26/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724 Attn: Holly Woodward

Phone: (702) 492-7922 Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-09A

Client I.D. Number: APMS MW-14

Sampled: 09/19/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting			Reporting
	Compound	Concentration	Limit	Compound	Concentration	Limit
1	Chloromethane	ND	40 μg/L	26 1,3-Dichlorobenzene	ND	10 μg/L
2	Vinyl chloride	ND	10 μg/L	27 1,4-Dichlorobenzene	ND	10 μg/L
3	Chloroethane	ND	10 μg/L	28 1,2-Dichlorobenzene	ND	10 μg/L
4	Bromomethane	ND	40 μg/L	29 Surr: 1,2-Dichloroethane-d4	102	%REC
5	Trichlorofluoromethane	ND	10 μg/L	30 Surr: Toluene-d8	99	%REC
6	1,1-Dichloroethene	ND	10 μg/L	31 Surr: 4-Bromofluorobenzene	107	%REC
7	Dichloromethane	ND	40 μg/L	'	,	
8	trans-1,2-Dichloroethene	ND	10 μg/L			
9	1,1-Dichloroethane	ND	10 μg/L			
10	cis-1,2-Dichloroethene	ND	10 μg/L			
11	Chloroform	ND	10 μg/L			
12	1,2-Dichloroethane	ND	10 μg/L			
13	1,1,1-Trichloroethane	ND	10 μg/L			
14	Carbon tetrachloride	ND	10 μg/L			
15	1,2-Dichloropropane	ND	10 μg/L			
16	Trichloroethene	ND	10 μg/L			
17	Bromodichloromethane	ND	10 μg/L		i,	
18	cis-1,3-Dichloropropene	ND	10 μg/L			
19	trans-1,3-Dichloropropene	ND	10 μg/L			
20	1,1,2-Trichloroethane	ND	10 μg/L			
21	Dibromochloromethane	ND	10 μg/L			
22	Tetrachloroethene	650	10 μg/L			
23	Chlorobenzene	ND	10 μg/L			
24	Bromoform	ND	10 μg/L			
25	1,1,2,2-Tetrachloroethane	ND	10 μg/L			

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl Kandy Saulm

Walter Hinkow

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

9/26/07 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119 Job#: 26698724 Attn: Holly Woodward

Phone: (702) 492-7922 Fax: (702) 492-9149

Alpha Analytical Number: URS07092020-10A

Client I.D. Number: APMS MW-13

Sampled: 09/19/07

Received: 09/20/07 Analyzed: 09/21/07

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	80 μg/L	26	1,3-Dichlorobenzene	ND	20 μg/L
2	Vinyl chloride	ND	20 μg/L	27	1,4-Dichlorobenzene	ND	20 μg/L
3	Chloroethane	ND	20 μg/L	28	1,2-Dichlorobenzene	ND	20 μg/L
4	Bromomethane	ND	80 μg/L	29	Surr: 1,2-Dichloroethane-d4	103	%REC
5	Trichlorofluoromethane	ND	20 μg/L	30	Surr: Toluene-d8	98	%REC
6	1,1-Dichloroethene	ND	20 μg/L	31	Surr: 4-Bromofluorobenzene	106	%REC
7	Dichloromethane	ND	80 μg/L			,	
8	trans-1,2-Dichloroethene	ND	20 μg/L				
9	1,1-Dichloroethane	ND	20 μg/L				
10	cis-1,2-Dichloroethene	ND	20 μg/L				
11	Chloroform	ND	20 μg/L				
12	1,2-Dichloroethane	ND	20 μg/L				
13	1,1,1-Trichloroethane	ND	20 μg/L				
14	Carbon tetrachloride	ND	20 μg/L				
15	1,2-Dichloropropane	ND	20 μg/L				
16	Trichloroethene	ND	20 μg/L				
17	Bromodichloromethane	ND	20 μg/L				
18	cis-1,3-Dichloropropene	ND	20 μg/L				
19	trans-1,3-Dichloropropene	ND	20 μg/L				
20	1,1,2-Trichloroethane	ND	20 μg/L				
21	Dibromochloromethane	ND	20 μg/L				
22	Tetrachloroethene	2,000	20 μg/L				
23	Chlorobenzene	ND	20 μg/L				
24	Bromoform	ND	20 μg/L				
25	1,1,2,2-Tetrachloroethane	ND	20 μg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Kandy Saulner

Walter Hinkow

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer
Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

9/26/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: URS07092020 Project: 26698724

Alpha's Sample ID	Client's Sample ID	Matrix	рН	
07092020-01A	APMS MW-17	Aqueous	2	
07092020-02A	APMS MW-27	Aqueous	2	
07092020-03A	APMS MW-19	Aqueous	2	
07092020-04A	APMS MW-26	Aqueous	2	
07092020-05A	APMS MW-25	Aqueous	2	
07092020-06A	APMS MW-23	Aqueous	2	
07092020-07A	APMS MW-18	Aqueous	2	
07092020-08A	APMS MW-20	Aqueous	4	
07092020-09A	APMS MW-14	Aqueous	2	
07092020-10A	APMS MW-13	Aqueous	2	

9/26/07 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Attn:

Holly Woodward

Phone: (702) 492-7922

Fax:

(702) 492-9149

Date Received: 09/20/07

Job#:

26698724

Metals by ICPMS

EPA Method SW6020

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID:	APMS MW-25					
Lab ID:	URS07092020-05A	Manganese (Mn)	0.0096	0.0050 mg/L	09/18/07	09/20/07
		Iron (Fe)	1.6	0.30 mg/L	09/18/07	09/20/07
Client ID:	APMS MW-18					
Lab ID:	URS07092020-07A	Manganese (Mn)	ND	$0.0050~\mathrm{mg/L}$	09/19/07	09/24/07
		Iron (Fe)	2.0	0.30 mg/L	09/19/07	09/24/07
Client ID:	APMS MW-13					
Lab ID:	URS07092020-10A	Manganese (Mn)	ND	0.0050 mg/L	09/19/07	09/20/07
		Iron (Fe)	1.6	0.30 mg/L	09/19/07	09/20/07

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

V 9/26/07

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Attn: Phone: (702) 492-7922 Fax:

(702) 492-9149

Holly Woodward

Date Received: 09/20/07

Job#: 26698724

> Alkalinity SM2320B

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID : Lab ID :	APMS MW-25 URS07092020-05A	Alkalinity, Total (As CaCO3 at pH 4.5)	240	1.0 mg/L	09/18/07	09/21/07
Client ID : Lab ID :	APMS MW-18 URS07092020-07A	Alkalinity, Total (As CaCO3 at pH 4.5)	210	1.0 mg/L	09/19/07	09/21/07
Client ID : Lab ID :	APMS MW-13 URS07092020-10A	Alkalinity, Total (As CaCO3 at pH 4.5)	240	1.0 mg/L	09/19/07	09/21/07

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#:

26698724

Attn:

Holly Woodward

Phone: (702) 492-7922

Fax:

(702) 492-9149

Date Received: 09/20/07

Anions by IC

EPA Method 300.0 / 9056

	Parameter	Concentration	Reporting Limit	Date / Time Sampled	Date / Time Analyzed
Client ID: APMS MW-25	Nitrate (NO3) - N	5.1	0.25 mg/L	09/18/07 15:22	09/20/07 11:50
Lab ID: URS07092020-05A					
Client ID: APMS MW-18	Nitrate (NO3) - N	5.8	0.25 mg/L	09/19/07 13:07	09/20/07 12:09
Lab ID: URS07092020-07A					
Client ID: APMS MW-13	Nitrate (NO3) - N	6.2	0.25 mg/L	09/19/07 15:51	09/20/07 12:27
Y 1 YD - YYD GODOOGO 40 1					

Lab ID: URS07092020-10A

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer $Sacramento, CA \bullet (916)\ 366-9089 \ / \ Las\ Vegas, NV \bullet (702)\ 281-4848 \ / \ info@alpha-analytical.com$ Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

URS Corporation 811 Grier Dr.

Las Vegas, NV 89119

Job#: 26698724

Attn: Holly Woodward

Phone: (702) 492-7922

(702) 492-9149

Anions by Ion Chromatography (IC) EPA Method 300.0 / SW9056

		Parameter	Concentration	Reporting	Date	Date
				Limit	Sampled	Analyzed
Client ID:	APMS MW-25					
Lab ID:	URS07092020-05A	Chloride	210	5.0 mg/L	09/18/07	09/20/07
		Sulfate (SO4)	1,800	100 mg/L	09/18/07	09/20/07
Client ID:	APMS MW-18					
Lab ID:	URS07092020-07A	Chloride	190	5.0 mg/L	09/19/07	09/20/07
		Sulfate (SO4)	1,700	100 mg/L	09/19/07	09/20/07
Client ID:	APMS MW-13					
Lab ID:	URS07092020-10A	Chloride	210	5.0 mg/L	09/19/07	09/20/07
		Sulfate (SO4)	1,700	100 mg/L	09/19/07	09/20/07

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV16.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 25-Sep-07	(QC Summary Report								
Method Blank File ID: C:\HPCHEM\MS07\DATA\070921\	.07092105 D	Туре М		est Code: EF atch ID: MS0				sis Date	09/21/2007 11:01	
						£ 1A	•			
-	Units : µg/L			SD_07_0709			Prep [09/21/2007	_
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qua
Chloromethane	ND	2								
Vinyl chloride	ND	1								
Chloroethane Bromomethane	ND	1								
Trichlorofluoromethane	ND ND	2								
1,1-Dichloroethene	ND	1								
Dichloromethane	ND ND	2								
trans-1,2-Dichloroethene	ND	1								
1,1-Dichloroethane	ND	1								
cis-1,2-Dichloroethene	ND	1								
Chloroform	ND	1								
1,2-Dichloroethane	ND	1								
1,1,1-Trichloroethane	ND	1								
Carbon tetrachloride	ND	1								
1,2-Dichloropropane	ND	1								
Trichloroethene	ND	1								
Bromodichloromethane cis-1,3-Dichloropropene	ND	1								
trans-1,3-Dichloropropene	ND ND	1								
1,1,2-Trichloroethane	ND ND	1								
Dibromochloromethane	ND	1								
Tetrachloroethene	ND	1								
Chlorobenzene	ND	1								
Bromoform	ND	1								
1,1,2,2-Tetrachloroethane	ND	1								
1,3-Dichlorobenzene	ND	1								
1,4-Dichlorobenzene	ND	1								
1,2-Dichlorobenzene	ND	1								
Surr: 1,2-Dichloroethane-d4	9.87		10		99	75	128			
Surr: Toluene-d8	9.93		10		99	80	120			
Surr: 4-Bromofluorobenzene	10.6		10		106	80	120			
Laboratory Control Spike		Type LC	S T	est Code: EF	A Met	hod SW82				
File ID: C:\HPCHEM\MS07\DATA\070921\	.07092104.D		В	atch ID: MS0	7W092	21A	Analys	sis Date:	09/21/2007 10:38	
Sample ID: LCS MS07W0921A	Units : µg/L		Run ID: M	SD_07_0709	21A		Prep [Date:	09/21/2007	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qua
1,1-Dichloroethene	8.78	1	10		88	80	120			
Trichloroethene	9.72	1	10		97	70	130			
Chlorobenzene	10.1	1	10		101	70	130			
Surr: 1,2-Dichloroethane-d4	9.8	•	10		98	75	128			
Curry Taluana do	10.1		10		101	80	120			
Surr: Toluene-d8	10.1					00				
Surr: 4-Bromofluorobenzene	11.1		10		111	80	120			
Surr: 4-Bromofluorobenzene		Type M:		est Code: EF						
Surr: 4-Bromofluorobenzene Sample Matrix Spike	11.1	Type M:	S T		PA Met	hod SW82	260B	sis Date:	09/21/2007 11:34	
Surr: 4-Bromofluorobenzene Sample Matrix Spike File ID: C:\HPCHEM\MS07\DATA\070921\	11.1 .07092106.D	•	S T	atch ID: MS0	PA Met 07W092	hod SW82	260B Analys		09/21/2007 11:34 09/21/2007	-
Surr: 4-Bromofluorobenzene Sample Matrix Spike File ID: C:\HPCHEM\MS07\DATA\070921\ Sample ID: 07091935-02AMS	11.1 .07092106.D Units: µg/L	1	S T B: Run ID: M	atch ID: MS0 SD_07_070 9	PA Met 07W092 021A	hod SW82 21A	260B Analys Prep [Date:	09/21/2007	
Surr: 4-Bromofluorobenzene Sample Matrix Spike File ID: C:\HPCHEM\MS07\DATA\070921\ Sample ID: 07091935-02AMS Analyte	11.1 07092106.D Units : µg/L Result	PQL	S T B: Run ID: M SpkVal	atch ID: MS 0 SD_07_070 9 SpkRefVal	PA Met 07W092 021A %REC	hod SW82 21A LCL(ME)	Analys Prep [UCL(ME)	Date:		Qua
Surr: 4-Bromofluorobenzene Sample Matrix Spike File ID: C:\HPCHEM\MS07\DATA\070921\ Sample ID: 07091935-02AMS Analyte 1,1-Dichloroethene	11.1 07092106.D Units: µg/L Result 33.1	PQL	S T B: Run ID: M SpkVal 50	atch ID: MS 0 SD_07_070 9 SpkRefVal 0	PA Met 07W092 021A %REC 66	hod SW82 21A LCL(ME) 66	Analys Prep [UCL(ME)	Date:	09/21/2007	
Surr: 4-Bromofluorobenzene Sample Matrix Spike File ID: C:\HPCHEM\MS07\DATA\070921\ Sample ID: 07091935-02AMS Analyte 1,1-Dichloroethene Trichloroethene	11.1 07092106.D Units: µg/L Result 33.1 39.5	PQL 2.5 2.5	S T B: Run ID: M SpkVal 50 50	atch ID: MS 0 SD_07_0709 SpkRefVal 0 0	PA Met 07W092 021A %REC 66 79	hod SW82 21A LCL(ME) 66 69	Analys Prep [UCL(ME) 132 130	Date:	09/21/2007	
Surr: 4-Bromofluorobenzene Sample Matrix Spike File ID: C:\HPCHEM\MS07\DATA\070921\ Sample ID: 07091935-02AMS Analyte 1,1-Dichloroethene Trichloroethene Chlorobenzene	11.1 07092106.D Units: µg/L Result 33.1 39.5 42.8	PQL	S T B: Run ID: M SpkVal 50 50	atch ID: MS 0 SD_07_070 9 SpkRefVal 0	PA Met 07W092 021A %REC 66 79 86	hod SW82 21A LCL(ME) 66 69 70	260B Analys Prep [UCL(ME) 132 130 130	Date:	09/21/2007	
Surr: 4-Bromofluorobenzene Sample Matrix Spike File ID: C:\HPCHEM\MS07\DATA\070921\ Sample ID: 07091935-02AMS Analyte 1,1-Dichloroethene Trichloroethene	11.1 07092106.D Units: µg/L Result 33.1 39.5	PQL 2.5 2.5	S T B: Run ID: M SpkVal 50 50	atch ID: MS 0 SD_07_0709 SpkRefVal 0 0	PA Met 07W092 021A %REC 66 79	hod SW82 21A LCL(ME) 66 69	Analys Prep [UCL(ME) 132 130	Date:	09/21/2007	

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order: Date: QC Summary Report 25-Sep-07 07092020 Type MSD Test Code: EPA Method SW8260B Sample Matrix Spike Duplicate Analysis Date: 09/21/2007 11:56 File ID: C:\HPCHEM\MS07\DATA\070921\07092107.D Batch ID: MS07W0921A Sample ID: 07091935-02AMSD Units: µg/L Run ID: MSD_07_070921A Prep Date: 09/21/2007 Analyte PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Result 1,1-Dichloroethene 132 0.1(20)33 2.5 66 66 Trichloroethene 39.49 2.7(20) 38.4 2.5 77 69 130 Chlorobenzene 0 70 130 42.76 4.7(20) 44.8 2.5 50 90 Surr: 1,2-Dichloroethane-d4 48.6 50 97 75 128 Surr: Toluene-d8 105 80 120 52.4 50 Surr: 4-Bromofluorobenzene 112 80 120 56.2 50

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Sep-07	OC Summary Report									
Method Blank File ID: Sample ID: MBLK-TOC0925 Analyte		alysis Date: 09/25/2007 12:16 p Date: 09/25/2007								
Total Organic Carbon	ND 1									
Laboratory Control Spike File ID:	Type LCS Test Code: EPA Method SW9060/415. Batch ID: TOC0925 Ana	1/SM-5310C alysis Date: 09/25/2007 11:53								
Sample ID: LCS-TOC0925	Units: mg/L Run ID: TOC_070925A Pre	p Date: 09/25/2007								
Analyte	Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(M	E) RPDRefVal %RPD(Limit) Qual								
Total Organic Carbon	5.43 1 5 109 74 126									
Sample Matrix Spike File ID:	Type MS Test Code: EPA Method SW9060/415. Batch ID: TOC0925 Ana	1/SM-5310C alysis Date: 09/25/2007 15:05								
Sample ID: 07092432-01AMS	Units: mg/L Run ID: TOC_070925A Pre	p Date: 09/25/2007								
Analyte	Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(M	E) RPDRefVal %RPD(Limit) Qual								
Total Organic Carbon	5.24 1 5 0 105 56 137									
Sample Matrix Spike Duplicate File ID:	Type MSD Test Code: EPA Method SW9060/415. Batch ID: TOC0925 Ana	1/SM-5310C alysis Date: 09/25/2007 15:31								
Sample ID: 07092432-01AMSD	Units: mg/L Run ID: TOC_070925A Pre	p Date: 09/25/2007								
Analyte	Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(M	E) RPDRefVal %RPD(Limit) Qual								
Total Organic Carbon	5.04 1 5 0 101 56 137	5.237 3.8(20)								

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 25-Sep-07	(C Su	ımmar			Work Orde 07092020				
Method Blank File ID: 092007.B\068_ICB.D\ Sample ID: MB-18374 Analyte	Units : mg/L Result	Type M	Ba Run ID: IC I	est Code: El atch ID: 183 P/MS_0709 SpkRefVal	74 20B		Prep (Date:	09/20/2007 18:34 09/20/2007 /al %RPD(Limit)	Qual
Manganese (Mn) Iron (Fe)	ND ND	0.005 0.3								
Laboratory Control Spike File ID: 092007.B\069_LCS.D\ Sample ID: LCS-18374 Analyte	Units : mg/L Result	Type L o	Ba Run ID: IC I	est Code: El atch ID: 183 P/MS_0709 SpkRefVal	74 20B		Prep (Date:	09/20/2007 18:39 09/20/2007 Val %RPD(Limit)	Qual
Manganese (Mn) Iron (Fe)	2.56 50	0.005 0.3	2.5		102 100	83 83	120 119			
Sample Matrix Spike File ID: 092007.B\072SMPL.D\ Sample ID: 07092051-02AMS Analyte	Units : mg/L Result	Type M	Ba Run ID: IC	est Code: El atch ID: 183 P/MS_0709 SpkRefVal	74 20B		Prep l	Date:	09/20/2007 18:54 09/20/2007 Val %RPD(Limit)	Qual
Manganese (Mn) Iron (Fe)	2.52 49.2	0.005	2.5	0.06704 3.319	98 92	70 70	130 130			
Sample Matrix Spike Duplicate File ID: 092007.B\073SMPL.D\ Sample ID: 07092051-02AMSD	Units : mg/L		Ba Run ID: IC	est Code: El atch ID: 183 P/MS_0709	74 20B		Prep l	Date:	09/20/2007 18:59 09/20/2007	Ougl
Analyte Manganese (Mn) Iron (Fe)	2.47 50.3	0.005 0.3	2.5	0.06704 3.319	96 94	70 70 70	130 130	2.519 49.18		Qual

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Sep-07	(QC Summary Report							Work Orde 07092020	
Laboratory Control Spike File ID:		Type I	LCS		est Code: Satch ID: W0			Analysis Date:	09/21/2007 00:00	
Sample ID: LCS-W0921ALA	Units : mg/L		Rι	ın ID: W	ETLAB_07	0921C		Prep Date:	09/21/2007	
Analyte	Result	PQL		SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
Alkalinity, Total (As CaCO3 at pH 4.5)	5.01		1	5		100	90	110		

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 25-Sep-07		(Work Order: 07092020							
Method Blan	nk		Type N	IBLK T	est Code: El	PA Met	thod 300.0	/ 9056			
File ID: 13				Ва	atch ID: 183	70A		Analy	ysis Date:	09/20/2007 10:55	
Sample ID:	MB-18370	Units : mg/L		Run ID: IC	_2_070920	4		Prep	Date:	09/20/2007	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Nitrate (NO3) -	N	ND	0.25	5							
Laboratory	Fortified Blank		Type L	.FB Te	est Code: El	PA Met	thod 300.0	/ 9056			
File ID: 14				Ва	atch ID: 183	70A		Analy	ysis Date:	09/20/2007 11:13	
Sample ID:	LFB-18370	Units : mg/L		Run ID: IC	_2_070920	4		Prep	Date:	09/20/2007	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	C LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Nitrate (NO3) -	N	1.26	0.25	1.25		100	90	110			
Sample Mat	rix Spike		Type L	.FM Te	est Code: El	PA Met	thod 300.0	/ 9056			
File ID: 24	•			Ва	atch ID: 183	70A		Analy	ysis Date:	09/20/2007 14:18	
Sample ID:	07092041-03ALFM	Units : mg/L		Run ID: IC	_2_070920	4		Prep	Date:	09/20/2007	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Nitrate (NO3) -	N	2.34	0.25	1.25	1.137	96	80	120			
Sample Mat	rix Spike Duplicate		Type L	.FMD Te	est Code: El	PA Met	thod 300.0	/ 9056			
File ID: 25				Ва	atch ID: 183	70A		Analy	ysis Date:	09/20/2007 14:37	
Sample ID:	07092041-03ALFMD	Units : mg/L		Run ID: IC	_2_070920	4		Prep	Date:	09/20/2007	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Nitrate (NO3) -	·N	2.33	0.25	5 1.25	1.137	95	80	120	2.34	2 0.7(10)	

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 25-Sep-07	QC Summary Report										Work Order: 07092020	
Method Blar	nk		Type N		est Code: El		hod 300.0		sis Date	09/20/2007 10:55		
Sample ID:	MB-18370	Units : mg/L			_2_070920E			Prep		09/20/2007		
Analyte	2 10010	Result	PQL				LCL(ME)	•		Val %RPD(Limit)	Qual	
Sulfate (SO4)		ND	0.5									
Laboratory 1	Fortified Blank		Type L	_FB Te	est Code: El	PA Met	hod 300.0	/ 9056				
File ID: 14				Ва	atch ID: 183	70B		Analy	sis Date:	09/20/2007 11:13		
Sample ID:	LFB-18370	Units : mg/L		Run ID: IC	_2_070920E	3		Prep	Date:	09/20/2007		
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual	
Sulfate (SO4)		10.3	0.5	5 10		103	90	110				
Sample Mat	rix Spike		Туре І	_FM Te	est Code: El	PA Met	hod 300.0	/ 9056				
File ID: 31				Ва	atch ID: 183	70B		Analy	sis Date:	09/20/2007 16:28		
Sample ID:	07092041-03ALFM	Units : mg/L		Run ID: IC	_2_070920E	3		Prep	Date:	09/20/2007		
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual	
Sulfate (SO4)		63.4	0.5	5 20	42.29	105	80	120				
Sample Mat	rix Spike Duplicate		Type L	FMD Te	est Code: El	PA Met	hod 300.0	/ 9056				
File ID: 32	•			Ва	atch ID: 183	70B		Analy	sis Date:	09/20/2007 16:46		
Sample ID:	07092041-03ALFMD	Units : mg/L		Run ID: IC	_2_070920	3		Prep	Date:	09/20/2007		
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual	
Sulfate (SO4)		64	0.5	5 20	42.29	108	80	120	63.3	8 0.9(10)		

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 25-Sep-07		QC Summary Report										
Method Bla	nk		Type I	MBLK T	est Code: E	PA Met	thod 300.0	/ 9056				
File ID: 13				В	atch ID: 183	70C		Analy	/sis Date:	09/20/2007 10:55		
Sample ID:	MB-18370	Units: mg/L		Run ID: IC	2_0709201	3		Prep	Date:	09/20/2007		
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual	
Chloride		ND	0.9	5								
Laboratory	Fortified Blank		Type I	.FB T	est Code: E	PA Met	thod 300.0	/ 9056				
File ID: 14				В	atch ID: 183	70C		Analy	/sis Date:	09/20/2007 11:13		
Sample ID:	LFB-18370	Units : mg/L		Run ID: IC	2_0709201	3		Prep	Date:	09/20/2007		
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	CLCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual	
Chloride		4.98	0.9	5 5		99.6	90	110				
Sample Mat	rix Spike		Type I	FM T	est Code: E	PA Met	thod 300.0	/ 9056				
File ID: 31	•			В	atch ID: 183	70C		Analy	/sis Date:	09/20/2007 16:28		
Sample ID:	07092041-03ALFM	Units : mg/L		Run ID: IC	2_0709201	3		Prep	Date:	09/20/2007		
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual	
Chloride		56.8	0.	5 10	45.53	112	80	120				
Sample Mat	rix Spike Duplicate		Type I	FMD T	est Code: E	PA Met	thod 300.0	/ 9056				
File ID: 32	•			В	atch ID: 183	70C		Analy	/sis Date:	09/20/2007 16:46		
Sample ID:	07092041-03ALFMD	Units : mg/L		Run ID: IC	2_0709201	3		Prep	Date:	09/20/2007		
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual	
Chloride		57.6	0.	5 10	45.53	121	80	120	56.7	7 1.5(10)	M3	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to the spike level. The method control sample recovery was acceptable.

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Holly Woodward

TEL: (702) 492-7922

26698724

Client's COC #: 12415,15407

FAX: (702) 492-9149

811 Grier Dr. **URS** Corporation

EMail holly_woodward@urscorp.com

CC Report : Job : MS-A1 Phillips

Report Attention: Holly Woodward

Las Vegas, NV 89119

Z

Page: 1 of 1

WorkOrder: URSL07092020

Report Due By: 5:00 PM On: 27-Sep-07

EDD Required: No

Sampled by: Holly Woodward

Cooler Temp 4°C Samples Received 20-Sep-07

Date Printed 20-Sep-07

QC Level: S3	= Final Rpt, N	NBLK.	Final Rpt, MBLK, LCS, MS/MSD With Surrogates	D With	Surrogat	es										
											Request	Requested Tests				
Alpha	Client		Collection	No. of	No. of Bottles			ALKALINIT	ANIONS(A)	ANIONS(B)	ANIONS(C)	ALKALINIT ANIONS(A) ANIONS(B) ANIONS(C) METALS_A	TOC_W	VOC_W		
Sample ID	Sample ID	Mat	Matrix Date	ORG	SUB	TAT	PWS#	Y W	I W	١	18	2			Sample Remarks	narks
URS07092020-01A	A APMS MW-17	à	09/17/07 14:47	ω	0	Ŋ								8010		
URS07092020-02A	A APMS MW-27	Ą	09/17/07 15:59	ω	0	51								8010		
URS07092020-03A	A APMS MW-19	Ą	09/17/07 17:05	ω	0	51								8010		
URS07092020-04A	A APMS MW-26	à	09/18/07 14:11	ω	0	QI								8010		
URS07092020-05A	A APMS MW-25	Ą	09/18/07 15:22	6	0	Ŋ		Alk	CI,NO3,SO4	CI,NO3,SO4 CI,NO3,SO4 CI,NO3,SO4	CLNO3,SO4	Fe,Mn	TOC	8010		
URS07092020-06A	A APMS MW-23	AQ	09/19/07 10:27	ω	0	Οī								8010		
URS07092020-07A	A APMS MW-18	Ą	09/19/07 13:07	6	0	Οī		Alk	CI,NO3,SO4	CI,NO3,SO4 CI,NO3,SO4 CI	CI,NO3,SO4	Fe,Mn	ТОС	8010		
URS07092020-08A	A APMS MW-20	Ą	09/19/07 14:12	ω	0	5								8010		
URS07092020-09A	APMS MW-14	Ą	09/19/07 15:05	ω	0	თ								8010		
URS07092020-10A	APMS MW-13	Ą	09/19/07 15:51	6	0	5		Alk	CI,N03,S04	CI,NO3,SO4 CI,NO3,SO4 CI,NO3,SO4	CI,NO3,SO4	Fe,Mn	ТОС	8010		

Comments: Security seals intact. Frozen ice. TOC pH=2.:

Logged in by: Signature **Print Name**

> Alpha Analytical, Inc. Company Date/Time

9/120/070953

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

g Information:	Alpha Analytical, Inc.	AZ CA	A
Address SIL Given Drive	Sparks, Nevada 89431-5778	501te 21 /	Page # of
te, Zip <u>Lao Vegas, NV 8</u> umber <u>102 -492-7709 Fax <u>152</u></u>	(20,0)		/ 12415
Client Name	MS-N/PNJJuby 1006#7	17 (SB) / 20	Required QC Level?
Address	+10114 - W	8260	/ / // // // // // //
City, State, Zip	Phone # 492-7922 Fax # 702 4	\$ 415 10	EDD / EDF? YES NO
Office Use Sampled by Only	Report Attention Holing Washerd		Global ID #
Below Lab ID Number	Sample Description TAT	80 70 FF CI	REMARKS
1447 My AW URS07092020-01	DOMS NW-17	Χ.	
1537 02	(.M.M-27	-	
1705-1	MW-19	3408 X	
1411 1/4/2 1141	mw-26	3V47 X	
30	26-MW	3VOD X	
		1 p S X	
		(*) X	
K	K	18 X X	
1027 1/1/107 /	M w-23	3V0A K	
1307 07	3 ×-(8	3VAP K	
		10G X	
		\ X	
K K K	K	FXX	
ADDITIONAL INSTRUCTIONS:			
Signature 🤈	Print Name	Company	Date Time
Relinquished by Shelly wordward	Holly woodward	URS	9-19-07 434pm
Received by WWW	V.SM (TH	Color	4.19-07 4.74
Relinquished by	U-SMITH	(Jepha-	48.77 LO-51-6
Received by ### Relinquished by	K Muray	AM	9/20/07 09/0
Received by			
*Key: AQ - Aqueous SO - Soil WA - Waste	OT - Other **: L-Liter	V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass	P-Plastic OT-Other

of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis

				J	Samples C	ollected	From Whi	ch State?)
Name URS Corporation		255 Glendale	Alpha Analytical, ilic. 255 Glendale Avenue, Suite 21	21	D C	CA OR O	NV W	AZ CA NV WA Page #.	e# L of L
Address 811 900 Fax 702-49	492-9149	Sparks, Nevada 89431- Phone (775) 355-1044 Fax (775) 355-0406	Sparks, Nevada 89431-5778 Phone (775) 355-1044 Fax (775) 355-0406			Analyses	Analyses Required		15407
Client Name	P.O. # D	Phillips	12186992 # 40r		B	79 30	1	/ Req	Required QC Level?
Address	EMail Address	woodwad a	was direch		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	60	\$\langle 0	<u></u>	11 111 IV
City, State, Zip	Phone # フッし	_ 1	てらわってのし#	241P	418 418	100	3	EDD / EDF? YES	F? YESNO
Time Date Matrix* Sampled by Holly Sodus Report Attention Holly	Report Attention 1-101			Total and type of	20 20		71E	Global ID #	
S	Sa	Sample Description	TAT Filtered	** See below	_	70		RE	REMARKS
1412 /1417 PAURS07092020 - 08	50 to 135	MW-20		3008	*				
15051	—	mw-14			*				
03		MW-(S)		(<	X				
	^				X				
> /					×				
() () () () () () () () () ()	4	K				K K	0000		
	(\		
	p 101,	ware							
MILL									
ADDITIONAL INSTRUCTIONS:									
Signature		Print Name			Company			Date	Time
Relinquished by Alally Woodman	Most ,	y Woodward		URS				9-19-0	1435E
Received by	MS. N	7	P	pro				9-19-07	74.35
Relinquished by	W5:11	(17)		Op/a			2	2	4.35
Received by Halland	K Muna	ray	ALL	1				9/20/07	09/0
Received by									
*Key: AQ - Aqueous SO - Soil WA - Waste	e OT - Other	er AR - Air **: L-Liter	r V-Voa	S-Soil Jar	O-Orbo	T-Tedlar	B-Brass	P-Plastic	OT-Other

of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis